2018中考數(shù)學(xué)試題分類匯編 考點(diǎn)37 銳角三角函數(shù)和解直角三角形(含解析)

上傳人:Sc****h 文檔編號(hào):80711516 上傳時(shí)間:2022-04-25 格式:DOC 頁數(shù):44 大?。?.09MB
收藏 版權(quán)申訴 舉報(bào) 下載
2018中考數(shù)學(xué)試題分類匯編 考點(diǎn)37 銳角三角函數(shù)和解直角三角形(含解析)_第1頁
第1頁 / 共44頁
2018中考數(shù)學(xué)試題分類匯編 考點(diǎn)37 銳角三角函數(shù)和解直角三角形(含解析)_第2頁
第2頁 / 共44頁
2018中考數(shù)學(xué)試題分類匯編 考點(diǎn)37 銳角三角函數(shù)和解直角三角形(含解析)_第3頁
第3頁 / 共44頁

下載文檔到電腦,查找使用更方便

36 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018中考數(shù)學(xué)試題分類匯編 考點(diǎn)37 銳角三角函數(shù)和解直角三角形(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018中考數(shù)學(xué)試題分類匯編 考點(diǎn)37 銳角三角函數(shù)和解直角三角形(含解析)(44頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 2018中考數(shù)學(xué)試題分類匯編:考點(diǎn)37銳角三角函數(shù)和解直角三角形 一.選擇題(共15小題) 1.(2018?柳州)如圖,在Rt△ABC中,∠C=90°,BC=4,AC=3,則sinB==( ?。? A. B. C. D. 【分析】首先利用勾股定理計(jì)算出AB長,再計(jì)算sinB即可. 【解答】解:∵∠C=90°,BC=4,AC=3, ∴AB=5, ∴sinB==, 故選:A.   2.(2018?孝感)如圖,在Rt△ABC中,∠C=90°,AB=10,AC=8,則sinA等于( ?。? A. B. C. D. 【分析】先根據(jù)勾股定理求得BC=6,再由正弦函數(shù)的定義求

2、解可得. 【解答】解:在Rt△ABC中,∵AB=10、AC=8, ∴BC===6, ∴sinA===, 故選:A.   3.(2018?大慶)2cos60°=(  ) A.1 B. C. D. 【分析】直接利用特殊角的三角函數(shù)值進(jìn)而計(jì)算得出答案. 【解答】解:2cos60°=2×=1. 故選:A.   4.(2018?天津)cos30°的值等于( ?。? A. B. C.1 D. 【分析】根據(jù)特殊角的三角函數(shù)值直接解答即可. 【解答】解:cos30°=. 故選:B.   5.(2018?貴陽)如圖,A、B、C是小正方形的頂點(diǎn),且每個(gè)小正方形的邊長為1,則tan

3、∠BAC的值為( ?。? A. B.1 C. D. 【分析】連接BC,由網(wǎng)格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求. 【解答】解:連接BC, 由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2, ∴△ABC為等腰直角三角形, ∴∠BAC=45°, 則tan∠BAC=1, 故選:B.   6.(2018?金華)如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=α,∠ADC=β,則竹竿AB與AD的長度之比為( ?。? A. B. C. D. 【分析】在兩個(gè)直角三角形中,分別求出AB、AD即可解決問題; 【

4、解答】解:在Rt△ABC中,AB=, 在Rt△ACD中,AD=, ∴AB:AD=: =, 故選:B.   7.(2018?宜昌)如圖,要測量小河兩岸相對(duì)的兩點(diǎn)P,A的距離,可以在小河邊取PA的垂線PB上的一點(diǎn)C,測得PC=100米,∠PCA=35°,則小河寬PA等于( ?。? A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米 【分析】根據(jù)正切函數(shù)可求小河寬PA的長度. 【解答】解:∵PA⊥PB,PC=100米,∠PCA=35°, ∴小河寬PA=PCtan∠PCA=100tan35°米. 故選:C.   8.(201

5、8?威海)如圖,將一個(gè)小球從斜坡的點(diǎn)O處拋出,小球的拋出路線可以用二次函數(shù)y=4x﹣x2刻畫,斜坡可以用一次函數(shù)y=x刻畫,下列結(jié)論錯(cuò)誤的是( ?。? A.當(dāng)小球拋出高度達(dá)到7.5m時(shí),小球水平距O點(diǎn)水平距離為3m B.小球距O點(diǎn)水平距離超過4米呈下降趨勢 C.小球落地點(diǎn)距O點(diǎn)水平距離為7米 D.斜坡的坡度為1:2 【分析】求出當(dāng)y=7.5時(shí),x的值,判定A;根據(jù)二次函數(shù)的性質(zhì)求出對(duì)稱軸,根據(jù)二次函數(shù)性質(zhì)判斷B;求出拋物線與直線的交點(diǎn),判斷C,根據(jù)直線解析式和坡度的定義判斷D. 【解答】解:當(dāng)y=7.5時(shí),7.5=4x﹣x2, 整理得x2﹣8x+15=0, 解得,x1=3,x

6、2=5, ∴當(dāng)小球拋出高度達(dá)到7.5m時(shí),小球水平距O點(diǎn)水平距離為3m或5側(cè)面cm,A錯(cuò)誤,符合題意; y=4x﹣x2 =﹣(x﹣4)2+8, 則拋物線的對(duì)稱軸為x=4, ∴當(dāng)x>4時(shí),y隨x的增大而減小,即小球距O點(diǎn)水平距離超過4米呈下降趨勢,B正確,不符合題意; , 解得,,, 則小球落地點(diǎn)距O點(diǎn)水平距離為7米,C正確,不符合題意; ∵斜坡可以用一次函數(shù)y=x刻畫, ∴斜坡的坡度為1:2,D正確,不符合題意; 故選:A.   9.(2018?淄博)一輛小車沿著如圖所示的斜坡向上行駛了100米,其鉛直高度上升了15米.在用科學(xué)計(jì)算器求坡角α的度數(shù)時(shí),具體按鍵順序是(

7、 ?。? A. B. C. D. 【分析】先利用正弦的定義得到sinA=0.15,然后利用計(jì)算器求銳角α. 【解答】解:sinA===0.15, 所以用科學(xué)計(jì)算器求這條斜道傾斜角的度數(shù)時(shí),按鍵順序?yàn)? 故選:A.   10.(2018?重慶)如圖,旗桿及升旗臺(tái)的剖面和教學(xué)樓的剖面在同一平面上,旗桿與地面垂直,在教學(xué)樓底部E點(diǎn)處測得旗桿頂端的仰角∠AED=58°,升旗臺(tái)底部到教學(xué)樓底部的距離DE=7米,升旗臺(tái)坡面CD的坡度i=1:0.75,坡長CD=2米,若旗桿底部到坡面CD的水平距離BC=1米,則旗桿AB的高度約為(  )(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.

8、53,tan58°≈1.6) A.12.6米 B.13.1米 C.14.7米 D.16.3米 【分析】如圖延長AB交ED的延長線于M,作CJ⊥DM于J.則四邊形BMJC是矩形.在Rt△CDJ中求出CJ、DJ,再根據(jù),tan∠AEM=構(gòu)建方程即可解決問題; 【解答】解:如圖延長AB交ED的延長線于M,作CJ⊥DM于J.則四邊形BMJC是矩形. 在Rt△CJD中, ==,設(shè)CJ=4k,DJ=3k, 則有9k2+16k2=4, ∴k=, ∴BM=CJ=,BC=MJ=1,DJ=,EM=MJ+DJ+DE=, 在Rt△AEM中,tan∠AEM=, ∴1.6=, 解得AB≈13.

9、1(米), 故選:B.   11.(2018?重慶)如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達(dá)點(diǎn)C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達(dá)點(diǎn)D,然后再沿水平方向向右行走40米到達(dá)點(diǎn)E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)(  ) A.21.7米 B.22.4米 C.27.4米 D.28.8米 【分析】作BM⊥ED交ED的延長線于M,CN⊥DM于N.首先解直角

10、三角形Rt△CDN,求出CN,DN,再根據(jù)tan24°=,構(gòu)建方程即可解決問題; 【解答】解:作BM⊥ED交ED的延長線于M,CN⊥DM于N. 在Rt△CDN中,∵==,設(shè)CN=4k,DN=3k, ∴CD=10, ∴(3k)2+(4k)2=100, ∴k=2, ∴CN=8,DN=6, ∵四邊形BMNC是矩形, ∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66, 在Rt△AEM中,tan24°=, ∴0.45=, ∴AB=21.7(米), 故選:A.   12.(2018?長春)如圖,某地修建高速公路,要從A地向B地修一條隧道(點(diǎn)A、B在同一水平面

11、上).為了測量A、B兩地之間的距離,一架直升飛機(jī)從A地出發(fā),垂直上升800米到達(dá)C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為(  ) A.800sinα米 B.800tanα米 C.米 D.米 【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題; 【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米, ∴tanα=, ∴AB==. 故選:D.   13.(2018?香坊區(qū))如圖,熱氣球的探測器顯示,從熱氣球A看一棟樓頂部B的仰角為30°,看這棟樓底部C的俯角為60°,熱氣球A與樓的水平距離為1

12、20米,這棟樓的高度BC為(  ) A.160米 B.(60+160) C.160米 D.360米 【分析】首先過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)題意得∠BAD=30°,∠CAD=60°,AD=120m,然后利用三角函數(shù)求解即可求得答案. 【解答】解:過點(diǎn)A作AD⊥BC于點(diǎn)D,則∠BAD=30°,∠CAD=60°,AD=120m, 在Rt△ABD中,BD=AD?tan30°=120×=40(m), 在Rt△ACD中,CD=AD?tan60°=120×=120(m), ∴BC=BD+CD=160(m). 故選:C.   14.(2018?綿陽)一艘在南北航線上的測量船,于A

13、點(diǎn)處測得海島B在點(diǎn)A的南偏東30°方向,繼續(xù)向南航行30海里到達(dá)C點(diǎn)時(shí),測得海島B在C點(diǎn)的北偏東15°方向,那么海島B離此航線的最近距離是( ?。ńY(jié)果保留小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù):≈1.732,≈1.414) A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里 【分析】根據(jù)題意畫出圖形,結(jié)合圖形知∠BAC=30°、∠ACB=15°,作BD⊥AC于點(diǎn)D,以點(diǎn)B為頂點(diǎn)、BC為邊,在△ABC內(nèi)部作∠CBE=∠ACB=15°,設(shè)BD=x,則AB=BE=CE=2x、AD=DE=x,據(jù)此得出AC=2x+2x,根據(jù)題意列出方程,求解可得. 【解答】解:如圖所示, 由題意知,

14、∠BAC=30°、∠ACB=15°, 作BD⊥AC于點(diǎn)D,以點(diǎn)B為頂點(diǎn)、BC為邊,在△ABC內(nèi)部作∠CBE=∠ACB=15°, 則∠BED=30°,BE=CE, 設(shè)BD=x, 則AB=BE=CE=2x,AD=DE=x, ∴AC=AD+DE+CE=2x+2x, ∵AC=30, ∴2x+2x=30, 解得:x=≈5.49, 故選:B.   15.(2018?蘇州)如圖,某海監(jiān)船以20海里/小時(shí)的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處時(shí),測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時(shí)到達(dá)B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時(shí)到達(dá)C處,此時(shí)海

15、監(jiān)船與島嶼P之間的距離(即PC的長)為( ?。? A.40海里 B.60海里 C.20海里 D.40海里 【分析】首先證明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解決問題; 【解答】解:在Rt△PAB中,∵∠APB=30°, ∴PB=2AB, 由題意BC=2AB, ∴PB=BC, ∴∠C=∠CPB, ∵∠ABP=∠C+∠CPB=60°, ∴∠C=30°, ∴PC=2PA, ∵PA=AB?tan60°, ∴PC=2×20×=40(海里), 故選:D.   二.填空題(共17小題) 16.(2018?北京)如圖所示的網(wǎng)格是正方形網(wǎng)格,∠BAC 

16、> ∠DAE.(填“>”,“=”或“<”) 【分析】作輔助線,構(gòu)建三角形及高線NP,先利用面積法求高線PN=,再分別求∠BAC、∠DAE的正弦,根據(jù)正弦值隨著角度的增大而增大,作判斷. 【解答】解:連接NH,BC,過N作NP⊥AD于P, S△ANH=2×2﹣﹣×1×1=AH?NP, =PN, PN=, Rt△ANP中,sin∠NAP====0.6, Rt△ABC中,sin∠BAC===>0.6, ∵正弦值隨著角度的增大而增大, ∴∠BAC>∠DAE, 故答案為:>.   17.(2018?濱州)在△ABC中,∠C=90°,若tanA=,則sinB= ?。? 【分

17、析】直接根據(jù)題意表示出三角形的各邊,進(jìn)而利用銳角三角函數(shù)關(guān)系得出答案. 【解答】解:如圖所示: ∵∠C=90°,tanA=, ∴設(shè)BC=x,則AC=2x,故AB=x, 則sinB===. 故答案為:.   18.(2018?泰安)如圖,在△ABC中,AC=6,BC=10,tanC=,點(diǎn)D是AC邊上的動(dòng)點(diǎn)(不與點(diǎn)C重合),過D作DE⊥BC,垂足為E,點(diǎn)F是BD的中點(diǎn),連接EF,設(shè)CD=x,△DEF的面積為S,則S與x之間的函數(shù)關(guān)系式為 S=x2?。? 【分析】可在直角三角形CED中,根據(jù)DE、CE的長,求出△BED的面積即可解決問題. 【解答】解:(1)在Rt△CDE中,

18、tanC=,CD=x ∴DE=x,CE=x, ∴BE=10﹣x, ∴S△BED=×(10﹣x)?x=﹣x2+3x. ∵DF=BF, ∴S=S△BED=x2, 故答案為S=x2.   19.(2018?無錫)已知△ABC中,AB=10,AC=2,∠B=30°,則△ABC的面積等于 15或10?。? 【分析】作AD⊥BC交BC(或BC延長線)于點(diǎn)D,分AB、AC位于AD異側(cè)和同側(cè)兩種情況,先在Rt△ABD中求得AD、BD的值,再在Rt△ACD中利用勾股定理求得CD的長,繼而就兩種情況分別求出BC的長,根據(jù)三角形的面積公式求解可得. 【解答】解:作AD⊥BC交BC(或BC延長線)于

19、點(diǎn)D, ①如圖1,當(dāng)AB、AC位于AD異側(cè)時(shí), 在Rt△ABD中,∵∠B=30°,AB=10, ∴AD=ABsinB=5,BD=ABcosB=5, 在Rt△ACD中,∵AC=2, ∴CD===, 則BC=BD+CD=6, ∴S△ABC=?BC?AD=×6×5=15; ②如圖2,當(dāng)AB、AC在AD的同側(cè)時(shí), 由①知,BD=5,CD=, 則BC=BD﹣CD=4, ∴S△ABC=?BC?AD=×4×5=10. 綜上,△ABC的面積是15或10, 故答案為15或10.   20.(2018?香坊區(qū))如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內(nèi)

20、部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為 5 . 【分析】作輔助線,構(gòu)建全等三角形和高線DH,設(shè)CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論. 【解答】解:過D作DH⊥BC于H,過A作AM⊥BC于M,過D作DG⊥AM于G, 設(shè)CM=a, ∵AB=AC, ∴BC=2CM=2a, ∵tan∠ACB=2, ∴=2, ∴AM=2a, 由勾股定理得:AC=a, S△BDC=BC?D

21、H=10, =10, DH=, ∵∠DHM=∠HMG=∠MGD=90°, ∴四邊形DHMG為矩形, ∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG, ∵∠ADC=90°=∠ADG+∠CDG, ∴∠ADG=∠CDH, 在△ADG和△CDH中, ∵, ∴△ADG≌△CDH(AAS), ∴DG=DH=MG=,AG=CH=a+, ∴AM=AG+MG, 即2a=a++, a2=20, 在Rt△ADC中,AD2+CD2=AC2, ∵AD=CD, ∴2AD2=5a2=100, ∴AD=5或﹣5(舍), 故答案為:5..   21.(2018?眉山

22、)如圖,在邊長為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tan∠AOD= 2?。? 【分析】首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對(duì)應(yīng)邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案. 【解答】解:如圖,連接BE, ∵四邊形BCEK是正方形, ∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK, ∴BF=CF, 根據(jù)題意得:AC∥BK, ∴△ACO∽△BKO, ∴KO:CO=BK:AC=1:3, ∴KO:

23、KF=1:2, ∴KO=OF=CF=BF, 在Rt△PBF中,tan∠BOF==2, ∵∠AOD=∠BOF, ∴tan∠AOD=2. 故答案為:2   22.(2018?德州)如圖,在4×4的正方形方格圖形中,小正方形的頂點(diǎn)稱為格點(diǎn),△ABC的頂點(diǎn)都在格點(diǎn)上,則∠BAC的正弦值是 ?。? 【分析】先根據(jù)勾股定理的逆定理判斷出△ABC的形狀,再由銳角三角函數(shù)的定義即可得出結(jié)論. 【解答】解:∵AB2=32+42=25、AC2=22+42=20、BC2=12+22=5, ∴AC2+BC2=AB2, ∴△ABC為直角三角形,且∠ACB=90°, 則sin∠BAC==, 故

24、答案為:.   23.(2018?齊齊哈爾)四邊形ABCD中,BD是對(duì)角線,∠ABC=90°,tan∠ABD=,AB=20,BC=10,AD=13,則線段CD= 17?。? 【分析】作AH⊥BD于H,CG⊥BD于G,根據(jù)正切的定義分別求出AH、BH,根據(jù)勾股定理求出HD,得到BD,根據(jù)勾股定理計(jì)算即可. 【解答】解:作AH⊥BD于H,CG⊥BD于G, ∵tan∠ABD=, ∴=, 設(shè)AH=3x,則BH=4x, 由勾股定理得,(3x)2+(4x)2=202, 解得,x=4, 則AH=12,BH=16, 在Rt△AHD中,HD==5, ∴BD=BH+HD=21, ∵∠ABD

25、+∠CBD=90°,∠BCH+∠CBD=90°, ∴∠ABD=∠CBH, ∴=,又BC=10, ∴BG=6,CG=8, ∴DG=BD﹣BG=15, ∴CD==17, 故答案為:17.   24.(2018?廣州)如圖,旗桿高AB=8m,某一時(shí)刻,旗桿影子長BC=16m,則tanC= ?。? 【分析】根據(jù)直角三角形的性質(zhì)解答即可. 【解答】解:∵旗桿高AB=8m,旗桿影子長BC=16m, ∴tanC=, 故答案為:   25.(2018?棗莊)如圖,某商店?duì)I業(yè)大廳自動(dòng)扶梯AB的傾斜角為31°,AB的長為12米,則大廳兩層之間的高度為 6.2 米.(結(jié)果保留兩個(gè)有

26、效數(shù)字)【參考數(shù)據(jù);sin31°=0.515,cos31°=0.857,tan31°=0.601】 【分析】根據(jù)題意和銳角三角函數(shù)可以求得BC的長,從而可以解答本題. 【解答】解:在Rt△ABC中, ∵∠ACB=90°, ∴BC=AB?sin∠BAC=12×0.515≈6.2(米), 答:大廳兩層之間的距離BC的長約為6.2米. 故答案為:6.2.   26.(2018?廣西)如圖,從甲樓底部A處測得乙樓頂部C處的仰角是30°,從甲樓頂部B處測得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是 40 m(結(jié)果保留根號(hào)) 【分析】利用等腰直角三角

27、形的性質(zhì)得出AB=AD,再利用銳角三角函數(shù)關(guān)系得出答案. 【解答】解:由題意可得:∠BDA=45°, 則AB=AD=120m, 又∵∠CAD=30°, ∴在Rt△ADC中, tan∠CDA=tan30°==, 解得:CD=40(m), 故答案為:40.   27.(2018?寧波)如圖,某高速公路建設(shè)中需要測量某條江的寬度AB,飛機(jī)上的測量人員在C處測得A,B兩點(diǎn)的俯角分別為45°和30°.若飛機(jī)離地面的高度CH為1200米,且點(diǎn)H,A,B在同一水平直線上,則這條江的寬度AB為 1200(﹣1) 米(結(jié)果保留根號(hào)). 【分析】在Rt△ACH和Rt△HCB中,利用銳角三角

28、函數(shù),用CH表示出AH、BH的長,然后計(jì)算出AB的長. 【解答】解:由于CD∥HB, ∴∠CAH=∠ACD=45°,∠B=∠BCD=30° 在Rt△ACH中,∵∴∠CAH=45° ∴AH=CH=1200米, 在Rt△HCB,∵tan∠B= ∴HB== ==1200(米). ∴AB=HB﹣HA =1200﹣1200 =1200(﹣1)米 故答案為:1200(﹣1)   28.(2018?黃石)如圖,無人機(jī)在空中C處測得地面A、B兩點(diǎn)的俯角分別為60°、45°,如果無人機(jī)距地面高度CD為米,點(diǎn)A、D、E在同一水平直線上,則A、B兩點(diǎn)間的距離是 100(1+) 米.(結(jié)

29、果保留根號(hào)) 【分析】如圖,利用平行線的性質(zhì)得∠A=60°,∠B=45°,在Rt△ACD中利用正切定義可計(jì)算出AD=100,在Rt△BCD中利用等腰直角三角形的性質(zhì)得BD=CD=100,然后計(jì)算AD+BD即可. 【解答】解:如圖, ∵無人機(jī)在空中C處測得地面A、B兩點(diǎn)的俯角分別為60°、45°, ∴∠A=60°,∠B=45°, 在Rt△ACD中,∵tanA=, ∴AD==100, 在Rt△BCD中,BD=CD=100, ∴AB=AD+BD=100+100=100(1+). 答:A、B兩點(diǎn)間的距離為100(1+)米. 故答案為100(1+).   29.(2018?咸

30、寧)如圖,航拍無人機(jī)從A處測得一幢建筑物頂部B的仰角為45°,測得底部C的俯角為60°,此時(shí)航拍無人機(jī)與該建筑物的水平距離AD為110m,那么該建筑物的高度BC約為 300 m(結(jié)果保留整數(shù),≈1.73). 【分析】在Rt△ABD中,根據(jù)正切函數(shù)求得BD=AD?tan∠BAD,在Rt△ACD中,求得CD=AD?tan∠CAD,再根據(jù)BC=BD+CD,代入數(shù)據(jù)計(jì)算即可. 【解答】解:如圖,∵在Rt△ABD中,AD=90,∠BAD=45°, ∴BD=AD=110(m), ∵在Rt△ACD中,∠CAD=60°, ∴CD=AD?tan60°=110×=190(m), ∴BC=BD+CD

31、=110+190=300(m) 答:該建筑物的高度BC約為300米. 故答案為300.   30.(2018?天門)我國海域遼闊,漁業(yè)資源豐富.如圖,現(xiàn)有漁船B在海島A,C附近捕魚作業(yè),已知海島C位于海島A的北偏東45°方向上.在漁船B上測得海島A位于漁船B的北偏西30°的方向上,此時(shí)海島C恰好位于漁船B的正北方向18(1+)n mile處,則海島A,C之間的距離為 18 n mile. 【分析】作AD⊥BC于D,根據(jù)正弦的定義、正切的定義分別求出BD、CD,根據(jù)題意列式計(jì)算即可. 【解答】解:作AD⊥BC于D, 設(shè)AC=x海里, 在Rt△ACD中,AD=AC×sin∠AC

32、D=x, 則CD=x, 在Rt△ABD中,BD=x, 則x+x=18(1+),解得,x=18, 答:A,C之間的距離為18海里. 故答案為:18   31.(2018?濰坊)如圖,一艘漁船正以60海里/小時(shí)的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1.5小時(shí)后到達(dá)B處,此時(shí)測得島礁P在北偏東30°方向,同時(shí)測得島礁P正東方向上的避風(fēng)港M在北偏東60°方向.為了在臺(tái)風(fēng)到來之前用最短時(shí)間到達(dá)M處,漁船立刻加速以75海里/小時(shí)的速度繼續(xù)航行  小時(shí)即可到達(dá).(結(jié)果保留根號(hào)) 【分析】如圖,過點(diǎn)P作PQ⊥AB交AB延長線于點(diǎn)Q,過點(diǎn)M作MN⊥AB交AB延長線于點(diǎn)N

33、,通過解直角△AQP、直角△BPQ求得PQ的長度,即MN的長度,然后通過解直角△BMN求得BM的長度,則易得所需時(shí)間. 【解答】解:如圖,過點(diǎn)P作PQ⊥AB交AB延長線于點(diǎn)Q,過點(diǎn)M作MN⊥AB交AB延長線于點(diǎn)N, 在直角△AQP中,∠PAQ=45°,則AQ=PQ=60×1.5+BQ=90+BQ(海里), 所以 BQ=PQ﹣90. 在直角△BPQ中,∠BPQ=30°,則BQ=PQ?tan30°=PQ(海里), 所以 PQ﹣90=PQ, 所以 PQ=45(3+)(海里) 所以 MN=PQ=45(3+)(海里) 在直角△BMN中,∠MBN=30°, 所以 BM=2MN=90(3+

34、)(海里) 所以 =(小時(shí)) 故答案是:.   32.(2018?濟(jì)寧)如圖,在一筆直的海岸線l上有相距2km的A,B兩個(gè)觀測站,B站在A站的正東方向上,從A站測得船C在北偏東60°的方向上,從B站測得船C在北偏東30°的方向上,則船C到海岸線l的距離是  km. 【分析】首先由題意可證得:△ACB是等腰三角形,即可求得BC的長,然后由在Rt△CBD中,CD=BC?sin60°,求得答案. 【解答】解:過點(diǎn)C作CD⊥AB于點(diǎn)D, 根據(jù)題意得:∠CAD=90°﹣60°=30°,∠CBD=90°﹣30°=60°, ∴∠ACB=∠CBD﹣∠CAD=30°, ∴∠CAB=∠A

35、CB, ∴BC=AB=2km, 在Rt△CBD中,CD=BC?sin60°=2×=(km). 故答案為:.   三.解答題(共18小題) 33.(2018?貴陽)如圖①,在Rt△ABC中,以下是小亮探究與之間關(guān)系的方法: ∵sinA=,sinB= ∴c=,c= ∴= 根據(jù)你掌握的三角函數(shù)知識(shí).在圖②的銳角△ABC中,探究、、之間的關(guān)系,并寫出探究過程. 【分析】三式相等,理由為:過A作AD⊥BC,BE⊥AC,在直角三角形ABD中,利用銳角三角函數(shù)定義表示出AD,在直角三角形ADC中,利用銳角三角函數(shù)定義表示出AD,兩者相等即可得證. 【解答】解: ==,理由為:

36、 過A作AD⊥BC,BE⊥AC, 在Rt△ABD中,sinB=,即AD=csinB, 在Rt△ADC中,sinC=,即AD=bsinC, ∴csinB=bsinC,即=, 同理可得=, 則==.   34.(2018?上海)如圖,已知△ABC中,AB=BC=5,tan∠ABC=. (1)求邊AC的長; (2)設(shè)邊BC的垂直平分線與邊AB的交點(diǎn)為D,求的值. 【分析】(1)過A作AE⊥BC,在直角三角形ABE中,利用銳角三角函數(shù)定義求出AC的長即可; (2)由DF垂直平分BC,求出BF的長,利用銳角三角函數(shù)定義求出DF的長,利用勾股定理求出BD的長,進(jìn)而求出AD的

37、長,即可求出所求. 【解答】解:(1)作A作AE⊥BC, 在Rt△ABE中,tan∠ABC==,AB=5, ∴AE=3,BE=4, ∴CE=BC﹣BE=5﹣4=1, 在Rt△AEC中,根據(jù)勾股定理得:AC==; (2)∵DF垂直平分BC, ∴BD=CD,BF=CF=, ∵tan∠DBF==, ∴DF=, 在Rt△BFD中,根據(jù)勾股定理得:BD==, ∴AD=5﹣=, 則=.   35.(2018?自貢)如圖,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的長. 【分析】如圖作CH⊥AB于H.在Rt△求出CH、BH,這種Rt△ACH中求出A

38、H、AC即可解決問題; 【解答】解:如圖作CH⊥AB于H. 在Rt△BCH中,∵BC=12,∠B=30°, ∴CH=BC=6,BH==6, 在Rt△ACH中,tanA==, ∴AH=8, ∴AC==10, ∴AB=AH+BH=8+6.   36.(2018?煙臺(tái))汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設(shè)置了區(qū)間測速如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測速,所有車輛限速40千米/小時(shí)數(shù)學(xué)實(shí)踐活動(dòng)小組設(shè)計(jì)了如下活動(dòng):在l上確定A,B兩點(diǎn),并在AB路段進(jìn)行區(qū)間測速.在l外取一點(diǎn)P,作PC⊥l,垂足為點(diǎn)C.測得PC=30米,

39、∠APC=71°,∠BPC=35°.上午9時(shí)測得一汽車從點(diǎn)A到點(diǎn)B用時(shí)6秒,請你用所學(xué)的數(shù)學(xué)知識(shí)說明該車是否超速.(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90) 【分析】先求得AC=PCtan∠APC=87、BC=PCtan∠BPC=21,據(jù)此得出AB=AC﹣BC=87﹣21=66,從而求得該車通過AB段的車速,比較大小即可得. 【解答】解:在Rt△APC中,AC=PCtan∠APC=30tan71°≈30×2.90=87, 在Rt△BPC中,BC=PCtan∠BPC=30t

40、an35°≈30×0.70=21, 則AB=AC﹣BC=87﹣21=66, ∴該汽車的實(shí)際速度為=11m/s, 又∵40km/h≈11.1m/s, ∴該車沒有超速.   37.(2018?紹興)如圖1,窗框和窗扇用“滑塊鉸鏈”連接,圖3是圖2中“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,托懸臂DE安裝在窗扇上,交點(diǎn)A處裝有滑塊,滑塊可以左右滑動(dòng),支點(diǎn)B,C,D始終在一直線上,延長DE交MN于點(diǎn)F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm. (1)窗扇完全打開,張角∠CAB=85°,求此時(shí)窗扇與窗框的夾角∠DFB的度數(shù); (2)窗扇部分打開,張角∠C

41、AB=60°,求此時(shí)點(diǎn)A,B之間的距離(精確到0.1cm). (參考數(shù)據(jù):≈1.732,≈2.449) 【分析】(1)根據(jù)平行四邊形的判定和性質(zhì)可以解答本題; (2)根據(jù)銳角三角函數(shù)和題意可以求得AB的長,從而可以解答本題. 【解答】解:(1)∵AC=DE=20cm,AE=CD=10cm, ∴四邊形ACDE是平行四邊形, ∴AC∥DE, ∴∠DFB=∠CAB, ∵∠CAB=85°, ∴∠DFB=85°; (2)作CG⊥AB于點(diǎn)G, ∵AC=20,∠CGA=90°,∠CAB=60°, ∴CG=,AG=10, ∵BD=40,CD=10, ∴CB=30, ∴BG==,

42、 ∴AB=AG+BG=10+10≈10+10×2.449=34.49≈34.5cm, 即A、B之間的距離為34.5cm.   38.(2018?臨沂)如圖,有一個(gè)三角形的鋼架ABC,∠A=30°,∠C=45°,AC=2(+1)m.請計(jì)算說明,工人師傅搬運(yùn)此鋼架能否通過一個(gè)直徑為2.1m的圓形門? 【分析】過B作BD⊥AC于D,解直角三角形求出AD=xm,CD=BD=xm,得出方程,求出方程的解即可. 【解答】解: 工人師傅搬運(yùn)此鋼架能通過一個(gè)直徑為2.1m的圓形門, 理由是:過B作BD⊥AC于D, ∵AB>BD,BC>BD,AC>AB, ∴求出DB長和2.1m比較即可

43、, 設(shè)BD=xm, ∵∠A=30°,∠C=45°, ∴DC=BD=xm,AD=BD=xm, ∵AC=2(+1)m, ∴x+x=2(+1), ∴x=2, 即BD=2m<2.1m, ∴工人師傅搬運(yùn)此鋼架能通過一個(gè)直徑為2.1m的圓形門.   39.(2018?長沙)為加快城鄉(xiāng)對(duì)接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對(duì)A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山.汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°. (1)開通隧道前,汽車從A地到B地大約要走多少千米? (2)開通隧道后,汽車

44、從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈141,≈1.73) 【分析】(1)過點(diǎn)C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進(jìn)而解答即可; (2)在直角△CBD中,解直角三角形求出BD,再求出AD,進(jìn)而求出汽車從A地到B地比原來少走多少路程. 【解答】解:(1)過點(diǎn)C作AB的垂線CD,垂足為D, ∵AB⊥CD,sin30°=,BC=80千米, ∴CD=BC?sin30°=80×(千米), AC=(千米), AC+BC=80+40≈40×1.41+80=136.4(千米), 答:開通隧道前,汽車從A地到B地大約要走13

45、6.4千米; (2)∵cos30°=,BC=80(千米), ∴BD=BC?cos30°=80×(千米), ∵tan45°=,CD=40(千米), ∴AD=(千米), ∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米), ∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=136.4﹣109.2=27.2(千米). 答:汽車從A地到B地比原來少走的路程為27.2千米.   40.(2018?白銀)隨著中國經(jīng)濟(jì)的快速發(fā)展以及科技水平的飛速提高,中國高鐵正迅速崛起.高鐵大大縮短了時(shí)空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要

46、繞行C地,若打通穿山隧道,建成A,B兩地的直達(dá)高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數(shù)據(jù):≈1.7,≈1.4) 【分析】過點(diǎn)C作CD⊥AB于點(diǎn)D,利用銳角三角函數(shù)的定義求出CD及AD的長,進(jìn)而可得出結(jié)論. 【解答】解:過點(diǎn)C作CD⊥AB于點(diǎn)D, 在Rt△ADC和Rt△BCD中, ∵∠CAB=30°,∠CBA=45°,AC=640, ∴CD=320,AD=320, ∴BD=CD=320,BC=320, ∴AC+BC=640+320≈1088, ∴AB=A

47、D+BD=320+320≈864, ∴1088﹣864=224(公里), 答:隧道打通后與打通前相比,從A地到B地的路程將約縮短224公里.   41.(2018?隨州)隨州市新?水一橋(如圖1)設(shè)計(jì)靈感來源于市花﹣﹣蘭花,采用蝴蝶蘭斜拉橋方案,設(shè)計(jì)長度為258米,寬32米,為雙向六車道,2018年4月3日通車.斜拉橋又稱斜張橋,主要由索塔、主梁、斜拉索組成.某座斜拉橋的部分截面圖如圖2所示,索塔AB和斜拉索(圖中只畫出最短的斜拉索DE和最長的斜拉索AC)均在同一水平面內(nèi),BC在水平橋面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD. (1)求最短的斜

48、拉索DE的長; (2)求最長的斜拉索AC的長. 【分析】(1)根據(jù)等腰直角三角形的性質(zhì)計(jì)算DE的長; (2)作AH⊥BC于H,如圖2,由于BD=DE=3,則AB=3BD=15,在Rt△ABH中,根據(jù)等腰直角三角形的性質(zhì)可計(jì)算出BH=AH=15,然后在Rt△ACH中利用含30度的直角三角形三邊的關(guān)系即可得到AC的長. 【解答】解:(1)∵∠ABC=∠DEB=45°, ∴△BDE為等腰直角三角形, ∴DE=BE=×6=3. 答:最短的斜拉索DE的長為3m; (2)作AH⊥BC于H,如圖2, ∵BD=DE=3, ∴AB=3BD=5×3=15, 在Rt△ABH中,∵∠B=45

49、°, ∴BH=AH=AB=×15=15, 在Rt△ACH中,∵∠C=30°, ∴AC=2AH=30. 答:最長的斜拉索AC的長為30m.   42.(2018?遵義)如圖,吊車在水平地面上吊起貨物時(shí),吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計(jì)算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05) (1)當(dāng)?shù)醣鄣撞緼與貨物的水平距離AC為5m時(shí),吊臂AB的長為 11.4 m. (2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略

50、不計(jì)) 【分析】(1)根據(jù)直角三角形的性質(zhì)和三角函數(shù)解答即可; (2)過點(diǎn)D作DH⊥地面于H,利用直角三角形的性質(zhì)和三角函數(shù)解答即可. 【解答】解:(1)在Rt△ABC中, ∵∠BAC=64°,AC=5m, ∴AB=(m); 故答案為:11.4; (2)過點(diǎn)D作DH⊥地面于H,交水平線于點(diǎn)E, 在Rt△ADE中, ∵AD=20m,∠DAE=64°,EH=1.5m, ∴DE=sin64°×AD≈20×0.9≈18(m), 即DH=DE+EH=18+1.5=19.5(m), 答:如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是19.5m.  

51、43.(2018?資陽)如圖是小紅在一次放風(fēng)箏活動(dòng)中某時(shí)段的示意圖,她在A處時(shí)的風(fēng)箏線(整個(gè)過程中風(fēng)箏線近似地看作直線)與水平線構(gòu)成30°角,線段AA1表示小紅身高1.5米. (1)當(dāng)風(fēng)箏的水平距離AC=18米時(shí),求此時(shí)風(fēng)箏線AD的長度; (2)當(dāng)她從點(diǎn)A跑動(dòng)9米到達(dá)點(diǎn)B處時(shí),風(fēng)箏線與水平線構(gòu)成45°角,此時(shí)風(fēng)箏到達(dá)點(diǎn)E處,風(fēng)箏的水平移動(dòng)距離CF=10米,這一過程中風(fēng)箏線的長度保持不變,求風(fēng)箏原來的高度C1D. 【分析】(1)在Rt△ACD中,由AD=可得答案; (2)設(shè)AF=x米,則BF=AB+AF=9+x,在Rt△BEF中求得AD=BE==18+x,由cos∠CAD=可建立關(guān)于

52、x的方程,解之求得x的值,即可得出AD的長,繼而根據(jù)CD=ADsin∠CAD求得CD從而得出答案. 【解答】解:(1)∵在Rt△ACD中,cos∠CAD=,AC=18、∠CAD=30°, ∴AD====12(米), 答:此時(shí)風(fēng)箏線AD的長度為12米; (2)設(shè)AF=x米,則BF=AB+AF=9+x(米), 在Rt△BEF中,BE===18+x(米), 由題意知AD=BE=18+x(米), ∵CF=10, ∴AC=AF+CF=10+x, 由cos∠CAD=可得=, 解得:x=3+2, 則AD=18+(3+2)=24+3, ∴CD=ADsin∠CAD=(24+3)×=,

53、 則C1D=CD+C1C=+=, 答:風(fēng)箏原來的高度C1D為米.   44.(2018?山西)祥云橋位于省城太原南部,該橋塔主體由三根曲線塔柱組合而成,全橋共設(shè)13對(duì)直線型斜拉索,造型新穎,是“三晉大地”的一種象征.某數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)把“測量斜拉索頂端到橋面的距離”作為一項(xiàng)課題活動(dòng),他們制訂了測量方案,并利用課余時(shí)間借助該橋斜拉索完成了實(shí)地測量.測量結(jié)果如下表. 項(xiàng)目 內(nèi)容 課題 測量斜拉索頂端到橋面的距離 測量示意圖 說明:兩側(cè)最長斜拉索AC,BC相交于點(diǎn)C,分別與橋面交于A,B兩點(diǎn),且點(diǎn)A,B,C在同一豎直平面內(nèi). 測量數(shù)據(jù) ∠A的度數(shù) ∠B的度數(shù)

54、 AB的長度 38° 28° 234米 … … (1)請幫助該小組根據(jù)上表中的測量數(shù)據(jù),求斜拉索頂端點(diǎn)C到AB的距離(參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5) (2)該小組要寫出一份完整的課題活動(dòng)報(bào)告,除上表的項(xiàng)目外,你認(rèn)為還需要補(bǔ)充哪些項(xiàng)目(寫出一個(gè)即可). 【分析】(1)過點(diǎn)C作CD⊥AB于點(diǎn)D.解直角三角形求出DC即可; (2)還需要補(bǔ)充的項(xiàng)目可為:測量工具,計(jì)算過程,人員分工,指導(dǎo)教師,活動(dòng)感受等 【解答】解:(1)過點(diǎn)C作CD⊥AB于點(diǎn)D. 設(shè)CD=x米,

55、在Rt△ADC中,∠ADC=90°,∠A=38°. ∵,∴. 在Rt△BDC中,∠BDC=90°,∠B=28°. ∵,∴. ∵AD+BD=AB=234,∴. 解得x=72. 答:斜拉索頂端點(diǎn)C到AB的距離為72米. (2)還需要補(bǔ)充的項(xiàng)目可為:測量工具,計(jì)算過程,人員分工,指導(dǎo)教師,活動(dòng)感受等.(答案不唯一)   45.(2018?常德)圖1是一商場的推拉門,已知門的寬度AD=2米,且兩扇門的大小相同(即AB=CD),將左邊的門ABB1A1繞門軸AA1向里面旋轉(zhuǎn)37°,將右邊的門CDD1C1繞門軸DD1向外面旋轉(zhuǎn)45°,其示意圖如圖2,求此時(shí)B與C之間的距離(結(jié)果保留一位

56、小數(shù)).(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,≈1.4) 【分析】作BE⊥AD于點(diǎn)E,作CF⊥AD于點(diǎn)F,延長FC到點(diǎn)M,使得BE=CM,則EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的長度,進(jìn)而可得出EF的長度,再在Rt△MEF中利用勾股定理即可求出EM的長,此題得解. 【解答】解:作BE⊥AD于點(diǎn)E,作CF⊥AD于點(diǎn)F,延長FC到點(diǎn)M,使得BE=CM,如圖所示. ∵AB=CD,AB+CD=AD=2, ∴AB=CD=1. 在Rt△ABE中,AB=1,∠A=37°, ∴BE=AB?sin∠A≈0.6,AE=AB?cos∠A≈0.8.

57、 在Rt△CDF中,CD=1,∠D=45°, ∴CF=CD?sin∠D≈0.7,DF=CD?cos∠D≈0.7. ∵BE⊥AD,CF⊥AD, ∴BE∥CM, 又∵BE=CM, ∴四邊形BEMC為平行四邊形, ∴BC=EM,CM=BE. 在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,F(xiàn)M=CF+CM=1.3, ∴EM=≈1.4, ∴B與C之間的距離約為1.4米.   46.(2018?臺(tái)州)圖1是一輛吊車的實(shí)物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動(dòng)點(diǎn)A離地面BD的高度AH為3.4m.當(dāng)起重臂AC長度為9m,張角∠HAC為118°時(shí),求操作平臺(tái)C離地面

58、的高度(結(jié)果保留小數(shù)點(diǎn)后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53) 【分析】作CE⊥BD于F,AF⊥CE于F,如圖2,易得四邊形AHEF為矩形,則EF=AH=3.4m,∠HAF=90°,再計(jì)算出∠CAF=28°,則在Rt△ACF中利用正弦可計(jì)算出CF,然后計(jì)算CF+EF即可. 【解答】解:作CE⊥BD于F,AF⊥CE于F,如圖2, 易得四邊形AHEF為矩形, ∴EF=AH=3.4m,∠HAF=90°, ∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°, 在Rt△ACF中,∵sin∠CAF=, ∴CF=9sin28°=9×0

59、.47=4.23, ∴CE=CF+EF=4.23+3.4≈7.6(m), 答:操作平臺(tái)C離地面的高度為7.6m.   47.(2018?岳陽)圖1是某小區(qū)入口實(shí)景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬3.9米,門衛(wèi)室外墻AB上的O點(diǎn)處裝有一盞路燈,點(diǎn)O與地面BC的距離為3.3米,燈臂OM長為1.2米(燈罩長度忽略不計(jì)),∠AOM=60°. (1)求點(diǎn)M到地面的距離; (2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進(jìn)入時(shí),貨車需與護(hù)欄CD保持0.65米的安全距離,此時(shí),貨車能否安全通過?若能,請通過計(jì)算說明;若不能,請說明理由.(參考數(shù)據(jù):≈1.7

60、3,結(jié)果精確到0.01米) 【分析】(1)構(gòu)建直角△OMN,求ON的長,相加可得BN的長,即點(diǎn)M到地面的距離; (2)左邊根據(jù)要求留0.65米的安全距離,即取CE=0.65,車寬EH=2.55,計(jì)算高GH的長即可,與3.5作比較,可得結(jié)論. 【解答】解:(1)如圖,過M作MN⊥AB于N,交BA的延長線于N, Rt△OMN中,∠NOM=60°,OM=1.2, ∴∠M=30°, ∴ON=OM=0.6, ∴NB=ON+OB=3.3+0.6=3.9; 即點(diǎn)M到地面的距離是3.9米; (2)取CE=0.65,EH=2.55, ∴HB=3.9﹣2.55﹣0.65=0.7, 過H作

61、GH⊥BC,交OM于G,過O作OP⊥GH于P, ∵∠GOP=30°, ∴tan30°==, ∴GP=OP=≈0.404, ∴GH=3.3+0.404=3.704≈3.70>3.5, ∴貨車能安全通過.   48.(2018?徐州)如圖,一座堤壩的橫截面是梯形,根據(jù)圖中給出的數(shù)據(jù),求壩高和壩底寬(精確到0.1m)參考數(shù)據(jù):≈1.414,≈1.732 【分析】利用銳角三角函數(shù),在Rt△CDE中計(jì)算出壩高DE及CE的長,通過矩形ADEF.利用等腰直角三角形的邊角關(guān)系,求出BF的長,得到壩底的寬. 【解答】解:在Rt△CDE中, ∵sin∠C=,cos∠C= ∴DE=si

62、n30°×DC=×14=7(m), CE=cos30°×DC=×14=7≈12.124≈12.12, ∵四邊形AFED是矩形, ∴EF=AD=6m,AF=DE=7m 在Rt△ABF中, ∵∠B=45° ∴DE=AF=7m, ∴BC=BF+EF+EC≈7+6+12.12=25.12≈25.1(m) 答:該壩的壩高和壩底寬分別為7m和25.1m.   49.(2018?河南)“高低杠”是女子體操特有的一個(gè)競技項(xiàng)目,其比賽器材由高、低兩根平行杠及若干支架組成,運(yùn)動(dòng)員可根據(jù)自己的身高和習(xí)慣在規(guī)定范圍內(nèi)調(diào)節(jié)高、低兩杠間的距離.某興趣小組根據(jù)高低杠器材的一種截面圖編制了如下數(shù)學(xué)問題

63、,請你解答. 如圖所示,底座上A,B兩點(diǎn)間的距離為90cm.低杠上點(diǎn)C到直線AB的距離CE的長為155cm,高杠上點(diǎn)D到直線AB的距離DF的長為234cm,已知低杠的支架AC與直線AB的夾角∠CAE為82.4°,高杠的支架BD與直線AB的夾角∠DBF為80.3°.求高、低杠間的水平距離CH的長.(結(jié)果精確到1cm,參考數(shù)據(jù)sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850) 【分析】利用銳角三角函數(shù),在Rt△ACE和Rt△DBF中,分別求出AE、BF的長.計(jì)算

64、出EF.通過矩形CEFH得到CH的長. 【解答】解:在Rt△ACE中, ∵tan∠CAE=, ∴AE==≈≈21(cm) 在Rt△DBF中, ∵tan∠DBF=, ∴BF==≈=40(cm) ∵EF=EA+AB+BF≈21+90+40=151(cm) ∵CE⊥EF,CH⊥DF,DF⊥EF ∴四邊形CEFH是矩形, ∴CH=EF=151cm 答:高、低杠間的水平距離CH的長為151cm.   50.(2018?嘉興)如圖1,滑動(dòng)調(diào)節(jié)式遮陽傘的立柱AC垂直于地面AB,P為立柱上的滑動(dòng)調(diào)節(jié)點(diǎn),傘體的截面示意圖為△PDE,F(xiàn)為PD的中點(diǎn),AC=2.8m,PD=2m,CF=1m

65、,∠DPE=20°,當(dāng)點(diǎn)P位于初始位置P0時(shí),點(diǎn)D與C重合(圖2).根據(jù)生活經(jīng)驗(yàn),當(dāng)太陽光線與PE垂直時(shí),遮陽效果最佳. (1)上午10:00時(shí),太陽光線與地面的夾角為65°(圖3),為使遮陽效果最佳,點(diǎn)P需從P0上調(diào)多少距離?(結(jié)果精確到0.1m) (2)中午12:00時(shí),太陽光線與地面垂直(圖4),為使遮陽效果最佳,點(diǎn)P在(1)的基礎(chǔ)上還需上調(diào)多少距離?(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73) 【分析】(1)只要證明△CFP1是等腰直角三角形,即可解決問題; (2)解直角三角形求出CP2的

66、長即可解決問題; 【解答】解:(1)如圖2中,當(dāng)P位于初始位置時(shí),CP0=2m, 如圖3中,上午10:00時(shí),太陽光線與地面的夾角為65°,上調(diào)的距離為P0P1. ∵∠1=90°,∠CAB=90°,∠ABE=65°, ∴∠AP1E=115°, ∴∠CP1E=65°, ∵∠DP1E=20°, ∴∠CP1F=45°, ∵CF=P1F=1m, ∴∠C=∠CP1F=45°, ∴△CP1F是等腰直角三角形, ∴P1C=m, ∴P0P1=CP0﹣P1C=2﹣≈0.6m, 即為使遮陽效果最佳,點(diǎn)P需從P0上調(diào)0.6m. (2)如圖4中,中午12:00時(shí),太陽光線與地面垂直(圖4),為使遮陽效果最佳,點(diǎn)P調(diào)到P2處. ∵P2E∥AB, ∴∠CP2E=∠CAB=90°, ∵∠DP2E=20°, ∴∠CP2F=70°,作FG⊥AC于G,則CP2=2CG=1×cos70°≈0.68m, ∴P1P2=CP1﹣CP2=﹣0.68≈0.7m, 即點(diǎn)P在(1)的基礎(chǔ)上還需上調(diào)0.7m.   44

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!