三軸四檔式手動變速器設計DOC

上傳人:無*** 文檔編號:87366302 上傳時間:2022-05-09 格式:DOC 頁數(shù):56 大?。?05.50KB
收藏 版權申訴 舉報 下載
三軸四檔式手動變速器設計DOC_第1頁
第1頁 / 共56頁
三軸四檔式手動變速器設計DOC_第2頁
第2頁 / 共56頁
三軸四檔式手動變速器設計DOC_第3頁
第3頁 / 共56頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《三軸四檔式手動變速器設計DOC》由會員分享,可在線閱讀,更多相關《三軸四檔式手動變速器設計DOC(56頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、三軸四檔式手動變速器設計 1 緒論 1.1 概述 自 1886 年世界上第一輛汽車誕生以來,汽車已經(jīng)歷了近 120 年的發(fā)展。隨著科學 技術的日益發(fā)展,汽車的各項性能也日臻完善?,F(xiàn)代汽車已成為世界各國國民經(jīng)濟和社 會生活中不可缺少的交通工具。 現(xiàn)代汽車除了裝有性能優(yōu)良的發(fā)動機外還應該有性能優(yōu) 異的傳動系與之匹配才能將汽車的性能淋漓盡致的發(fā)揮出來, 因此汽車變速器的設計顯 得尤為重要。 動力傳動系統(tǒng)是指動力裝置輸出的動力, 經(jīng)過傳動系統(tǒng)到達驅動車輪之間的一系列 部件的總稱,它使汽車實現(xiàn)起步、變速、減速、差速、變向等功能,為汽車提供良好的 動力性與燃油經(jīng)濟性能。其基本功能是將發(fā)動機發(fā)出的動

2、力傳給驅動車輪。動力傳遞的 方式按結構和傳動介質(zhì)可分為機械式、液力機械式、靜液式(容積液壓式) 、電力式等。 傳動系的組成及其在汽車上的布置形式,取決于發(fā)動機的形式和性能、汽車總體結構形 式、汽車行駛系及傳動系本身的結構形式等許多因素。 變速器在發(fā)動機和汽車之間主要起著匹配作用,通過改變變速器的傳動比,可以使 發(fā)動機在最有利的工況范圍內(nèi)工作。 變速器通常還設有到檔,在不改變發(fā)動機旋轉方向的情況下汽車能倒退行駛;設有 空檔,在滑行或停車時發(fā)動機和傳動系能保持分離。變速器還應能進行動力輸出。手動 變速器基本上是由齒輪、軸、軸承、同步器等動力傳動部件組成。 變速器能使汽車以非常低的穩(wěn)定車速行駛

3、, 而這種低的車速只靠內(nèi)燃機的最低穩(wěn)定 轉速是難以達到的。變速器的倒檔使汽車可以倒退行駛;其空檔使汽車在啟動發(fā)動機、 停車和滑行時能長時間將發(fā)動機與傳動系分離。 變速器由變速器傳動機構和操縱機構組成。根據(jù)需要,還可以加裝動力輸出器。 按傳動比變化方式,變速器可以分為有級式、無級式和綜合式三種。 有級式變速器應用最為廣泛。它采用齒輪傳動,具有若干個定值傳動比。按所用輪 系形式不同,有軸線固定式(普通變速器)和軸線旋轉式變速器(行星齒輪變速器)兩 種。目前,轎車和輕、中型貨車變速器的傳動比通常有 3?5個前進檔和一個倒檔,在 重型貨車用的組合變速器中,則有更多檔位。所謂變速器檔數(shù)即指其前進

4、檔位數(shù)。 無級式變速器的傳動比在一定的數(shù)值范圍內(nèi)可按無限多級變化, 常見的有電力式和 液力式(動液式)兩種。電力式無級變速器的變速傳動部件為直流串激電動機,除在無 軌電車上應用外,在超重型自卸車傳動系中也有廣泛采用的趨勢。動液式無級變速器的 傳動部件是液力變矩器。 綜合式變速器是指由液力變矩器和齒輪式有級變速器組成的液力機械式變速器, 其 傳動比可在最大值與最小值之間的幾個間斷的范圍內(nèi)作無級變化,目前應用較多。 強制操縱式變速器靠駕駛員直接操縱變速桿換擋,為大多數(shù)汽車所采用。 半自動操縱式變速器有兩種型式。一種是常用的幾個檔位自動操縱,其余檔位則由 駕駛員操縱;另一種是預選式,即駕

5、駛員預先用按鈕選定檔位,在踩下離合器踏板或松 開加速踏板時,接通一個電磁裝置或液壓裝置來進行換檔。 在多軸驅動汽車上,變速器之后還裝有分動器,以便把轉矩分別輸送給各驅動橋。 除此之外,變速器還應當滿足拆裝容易和維修方便等要求。變速器由變速器傳動機 構和操縱機構組成。變速傳動機構可按前進檔數(shù)或軸的形式不同分類。具體分類如下: 變速器的結構對汽車的動力性、燃油經(jīng)濟性、換檔操縱的可靠性與輕便性,傳動的 平穩(wěn)性與效率性等都有直的影響。采用優(yōu)化設計方法對變速器與主減速器,以及發(fā)動機 的參數(shù)作優(yōu)化匹配,可得到良好的動力性與燃油經(jīng)濟性;采用自鎖及互鎖裝置、倒檔安 全裝置,對接合齒采取倒錐齒側(

6、或越程咬合、錯位接合、齒厚減薄、臺階齒側)等措 施,以及其它結構措施,可使操縱可靠,不跳檔、亂檔、自行脫檔和誤掛倒檔;采用同 步器可使換檔輕便、無沖擊及噪聲;采用高齒、修形及參數(shù)優(yōu)化等措施可使齒輪傳動平 穩(wěn)、噪聲低。降低噪聲水平已成為提高變速器質(zhì)量和設計、工藝水平的關鍵。隨著汽車 技術的發(fā)展,增力式同步器,雙及三中間軸變速器,后置常嚙合傳動齒輪、短第二軸的 變速器,各種自動、半自動以及電子控制的自動換檔機構等新結構也相繼問世。 變速器多采用飛濺潤滑,重型汽車有時強制潤滑第一、二軸等。 變速器都裝有單向的通氣閥,以防殼內(nèi)空氣熱脹而漏油及潤滑油氧化。殼底的放油 塞多置磁鐵,以吸附油中鐵屑。涉水

7、車需有防水措施。 變速器的設計系列按輸出轉矩分級,供各種車型選用,也可根據(jù)具體車型的使用壽 命要求進行設計。可根據(jù)同類型在典型路段上實測的隨機載荷,用統(tǒng)計分析法組成載荷 譜,進行變速器的疲勞壽命計算。這種可靠性設計方法比較符合實際,如果再以油畫設 計方法選擇有關設計參數(shù)作最佳匹配, 則可得到以最小零部件尺寸滿足設計所要求的壽 命和性能的設計方案。有時亦可輔以有限元分析。 為保證變速器具有良好的工作性能,對變速器應提出如下的設計要求。 (1) 正確地選擇變速器的檔位數(shù)和傳動比,并使之與發(fā)動機參數(shù)及主減速比作優(yōu)化 匹配,以保證汽車具有良好的動力性與燃料經(jīng)濟性。 (2) 設置空擋,以保證汽車

8、在必要時能將發(fā)動機與傳動系長時間分離;使汽車可以 倒退行駛。 (3) 體積小、質(zhì)量小、承載能力強、使用壽命長、工作可靠。 (4) 操縱簡單、準確、輕便、迅速。 (5) 傳動效率高、工作平穩(wěn)、無噪聲或低噪聲。 (6) 制造工藝性好、造價低廉、維修方便。 (7) 貫徹零件標準化、部件通用化和變速器總成系列化等設計要求,遵守有關標準 和法規(guī)。 (8) 需要時應設置動力輸出裝置。 1.2 國內(nèi)外發(fā)展趨勢 回顧變速器技術的發(fā)展可以清楚的知道, 變速器作為汽車傳動系統(tǒng)的重要組成部分, 其技術的發(fā)展,是衡量汽車技術水平的一項重要依據(jù)。 21世紀能源與環(huán)境、 先進制造技 術、新型材料技術、信息

9、與控制技術等是科學技術發(fā)展的重要領域,這些領域的科技進 步推動了變速器技術的發(fā)展。 變速器技術的發(fā)展動向如下: (1)節(jié)能與環(huán)境保護。表示且的節(jié)能與環(huán)境保護既包括傳動系統(tǒng)本身的節(jié)能與環(huán) 境保護,也包括發(fā)動機本身的節(jié)能與環(huán)境保護。因此研究高效率的傳動副來節(jié)約能源, 采用零污染的工作介質(zhì)或潤滑油來避免環(huán)境污染, 根據(jù)發(fā)動機的特性和形式工況來設計 變速器,提高傳動效率和最低污染物排放區(qū)運行等措施。 (2)應用新型材料。材料科學與技術是 21 世紀重點發(fā)展的科學技術領域。各種新 型材料在變速器中的應用已經(jīng)推動了汽車技術的發(fā)展和性能的提高。 (3)高性能、低成本、微型化。高性能、高效、精密、低噪

10、聲、長壽命、重量輕、 體積小、低成本一直以來是變速器的發(fā)展方向 2變速器機構方案的確定 2.1傳動機構布置方案分析 本設計應用在現(xiàn)今使用廣泛的發(fā)動機前置、后輪驅動的 4X2總體布置方案,發(fā)動 機發(fā)出的動力依次經(jīng)過離合器、變速器、萬向傳動裝置(萬向節(jié)和傳動軸) 、主減速器、 差速器、半軸,傳到驅動輪,如圖 2.1所示 = 三 1?離合器;2?變速器;3.萬向傳動裝置; 4?驅動橋 圖2.1發(fā)動機前置后輪驅動汽車傳動系 變速器由變速傳動機構和操縱機構組成。 根據(jù)前進檔數(shù)的不同,變速器有三、四、五和多檔幾種。根據(jù)軸的不同類型,分為 固定軸式和旋轉軸式兩大類。而前者又分為

11、兩軸式、三軸式和多中間軸式變速器。 2.1.1固定軸式變速器 (1)兩軸式變速器 固定軸式中的兩軸式和中間軸式變速器應用廣泛。其中兩軸式 變速器多用于發(fā)動機前置前輪驅動汽車上。 與中間軸式變速器比較,兩軸式變速器因軸承數(shù)少,所以有結構簡單、輪廓尺寸小 和容易布置等優(yōu)點,此外,各中間檔位因只經(jīng)一對齒輪傳遞動力,故傳動效率高同時噪 聲也低。因兩軸式變速器不能設置直接檔,所以在高檔工作時齒輪和軸承均承載,不僅 工作噪聲增大,而且易損壞。還有,受結構限制,兩軸式變速器的一檔速比不可能設計 得很大。對于前進檔,兩軸式變速器輸入軸的轉動方向與輸出軸的轉動方向相反;而中 間軸式變速器的第一軸與輸出軸的

12、轉動方向相同。 本設計主要針對的是一噸級貨車或旅行車,所以兩軸式變速器不適用于本設計。 (2)中間軸式變速器 中間軸式變速器多用于發(fā)動機前置后輪驅動汽車和發(fā)動機 后置后輪驅動的客車上。變速器第一軸的前端經(jīng)軸承支承在發(fā)動機飛輪上,第一軸上的 花鍵用來裝設離合器的從動盤,而第二軸的末端經(jīng)花鍵與萬向節(jié)連接。各傳動方案的共 同特點是:變速器的第一軸后端與常嚙合主動齒輪做成一體。絕大多數(shù)方案的第二軸前 端經(jīng)軸承支承在第一軸后端的孔內(nèi),且保持兩軸軸線在同一直線上,經(jīng)嚙合套將它們連 接后可得到直接檔。是直接檔,變速器的齒輪和軸承及中間軸均不承載,發(fā)動機轉矩經(jīng) 變速器第一軸和第二軸直接輸出,此時變速器傳動

13、效率高,可達 90%以上,噪聲低、齒 輪和軸承的磨損減少。因為直接檔的利用率要高于其它檔位,因而提高了變速器的使用 壽命;在其它前進檔位工作時,變速器傳遞的動力需要經(jīng)過設置在第一軸、中間軸和第 二軸上的兩對齒輪傳遞,因此在變速器中間軸與第二軸之間的距離(中心距)不太大的 條件下,一檔仍然有較大的傳動比;檔位高的齒輪采用常嚙合齒輪傳動,檔位低的齒輪 (一檔)可以采用或不采用常嚙合齒輪傳動;多數(shù)傳動方案中除一檔外的其它檔位換檔 機構,均采用同步器或嚙合套換檔,少數(shù)結構的一檔也采用同步器或嚙合齒套換檔,還 有各檔同步器或嚙合套多數(shù)情況下裝在第二軸上。 在除直接檔以外的其它檔位工作時,中間軸式變速器

14、的傳動效率略有降低,這是它 的缺點。 在檔數(shù)相同的條件下,各中間軸式變速器主要在常嚙合齒輪對數(shù)、軸的支承方式、 換檔方式和倒檔傳動方案以及檔位布置順序上有差別。 由于本設計針對的是輕型汽車, 中間軸式五檔和六檔變速器體積和質(zhì)量顯得過于龐 大,而且傳動比大不適用于本設計,因此,選用中間軸式三軸四檔變速器設計方案。 凡采用常嚙合齒輪傳動的檔位,其換檔方式可以用同步器或嚙合套來實現(xiàn)。同一變 速器中,有的檔位用同步器換檔,有的檔位用嚙合套換檔,那么一定是檔位高的用同步 器換檔,檔位低的用嚙合套換檔。 發(fā)動機前置后輪驅動的乘用車采用中間軸式變速器,為縮短傳動軸長度,將第二軸 加長,置于附加的殼體

15、內(nèi)。如果在附加殼體內(nèi)布置倒檔傳動齒輪和換檔機構,還能減小 變速器主體部分的外形尺寸及提高中間軸和輸出軸的剛度。因此,這種方案比較適合本 設計,但需要加以改進。 2.1.2倒檔布置方案 與前進檔位比較,倒檔使用率不高,而且都是在停車狀態(tài)下實現(xiàn)倒檔,故多次數(shù)方 案均采用直齒滑動齒輪方式換倒檔。為實現(xiàn)倒檔傳動,有些方案利用中間軸和第二軸上 的齒輪傳動路線中加入一個中間傳動齒輪的方案;也有利用兩個聯(lián)體齒輪方案的。前者 雖然結構簡單,但是中間傳動齒輪的輪齒是在最不利的正、負交替變化的彎曲應力狀態(tài) 下工作;而后者是在較為有利的單向循環(huán)彎曲應力狀態(tài)下工作,并使倒檔傳動比略有增 加。也有少數(shù)變速器采用結

16、構復雜和使成本增加的嚙合套或同步器方案換入倒檔。 —— 圖22倒檔布置萬案 圖2.2為常見的倒檔布置方案。圖 2.2(a)所示方案的優(yōu)點是換倒檔時利用了中間軸 上的一檔齒輪,因而縮短了中間軸的長度;但換檔時要求有兩對齒輪同時進入嚙合,使 換檔困難。圖2.2(b)所示方案能獲得較大的倒檔傳動比,缺點是換檔程序不合理。圖2.2(c) 所示方案是將中間軸上的一、倒檔齒輪做成一體,將其齒寬加長。圖 2.2(d)所示方案適 用于全部齒輪副均為常嚙合的齒輪,換檔更為輕便。 綜上所述,方案(c)較為適合本設計 變速器的一檔或倒檔因傳動比大,工作時在齒輪上作用的力增大,并導致變速器軸 產(chǎn)生較

17、大的撓度和轉角,使工作齒輪嚙合狀態(tài)變壞,最終表現(xiàn)出齒輪磨損加快和工作噪聲增加。為此,無論是兩軸式變速器還是中間軸式變速器的一檔與倒檔,都應當布置在 靠近軸的支承處,以便改善上述不良狀況,然后按照從抵檔到高檔的順序布置各檔齒輪, 這樣做既能使軸有足夠大的剛性,又能保證容易裝配。倒檔的傳動比雖然與一檔的傳動 比接近,但因為使用倒檔的時間非常短,從這點出發(fā)有些方案將一檔布置在靠近軸的支 承處,然后再布置倒檔。此時在倒檔工作時,輪齒磨損與噪聲在短時間內(nèi)略有增加,而 在一檔工作時輪齒的磨損與噪聲有所減少。 倒檔設置在變速器的左側或右側,在結構上均能實現(xiàn),不同之處是掛倒檔時駕駛員 移動變速桿的方向改變了

18、。為防止意外掛入倒檔,一般在掛倒檔時設有一個掛倒檔時需 克服彈簧所產(chǎn)生的力,用來提醒駕駛員注意。從這一點來考慮,圖 2.3(a)、(b)的換檔方 案比圖2.3(c)的方案更合理。圖2.3(c)所示方案在掛一檔時也需克服用來防止誤掛倒檔所 產(chǎn)生的力,這對換檔不熟練的駕駛員是不利的。除此之外,倒檔的中間齒輪位于變速器 的左側或右側對倒檔軸的受力情況有影響。 2 4 倒 (b) 圖2.3變速桿換檔位置與順序 2.1.3其它問題 將高檔布置在靠近軸的兩 常用檔位的齒輪因接觸應力過高而易造成表面點蝕損壞。 端支承中部區(qū)域較為合理,在該區(qū)域因軸的變形而引起的齒輪偏轉角較小,

19、齒輪可保持 較好的嚙合狀態(tài),以減少偏載并提高、齒輪壽命。 機械式變速器的傳動效率與所選用的傳動方案有關, 包括傳遞動力時處于工作狀態(tài) 的齒輪對數(shù)、每分鐘轉速、傳遞的功率、潤滑系統(tǒng)的有效性、齒輪和殼體等零件的制造 精度等。 1 r N f y 一 L. fl ■ - Tl 一 H ■ ■ 4 2 9-^1^ 圖2.4四檔變速器結構方案 圖2.4為中間軸式四檔變速器結構簡圖。其結構特點是:前進檔全部采用常嚙合齒 輪傳動,用同步器換檔,同步器裝在第二軸上;本設計就是選擇的這種方案并在其基礎 上進行局部改進優(yōu)化設計的。 2.2零、部

20、件結構方案分析 2.2.1齒輪形式 變速器用齒輪有直齒圓柱齒輪和斜齒圓柱齒輪兩種。 與直齒圓柱齒輪比較,斜齒圓柱齒輪有使用壽命長、運轉平穩(wěn)、工作噪聲低等優(yōu)點; 缺點是制造時稍復雜,工作時有軸向力,這對軸承不利。變速器中的常嚙合齒輪均采用 斜齒圓柱齒輪,盡管這樣會使常嚙合齒輪數(shù)增加,并導變速器的質(zhì)量和轉動慣量增大。 直齒圓柱齒輪僅用于低檔和倒檔,本設計為一檔和倒檔采用直齒圓柱齒輪,二、三、四 檔常嚙合齒輪采用斜齒圓柱齒輪。 2.2.2換檔機構形式 變速器換檔機構有直齒滑動齒輪、嚙合套和同步器換檔三種形式。 汽車行駛時,因變速器內(nèi)各轉動齒輪有不同的角速度,所以用軸向滑動直齒齒輪方 式換

21、檔,會在輪齒端面產(chǎn)生沖擊, 并伴隨噪聲。 這不僅使齒輪端部磨損加劇并過早損壞, 同時使駕駛員精神緊張,而換檔產(chǎn)生的噪聲又使乘坐舒適性降低。除此之外,采用直齒 滑動齒輪換檔時,換檔行程長也是它的缺點。因此現(xiàn)在已很少在輕型汽車的變速器中使 用。當變速器第二軸上的齒輪與中間軸齒輪處于常嚙合狀態(tài)時, 可以用移動嚙合套換檔。 這時,不僅換檔行程短,同時因承受換檔沖擊的接合齒齒數(shù)多,而輪齒又不參與換檔, 所以它們都不會過早損壞; 但因不能消除換檔沖擊, 仍然要求駕駛員有熟練的操作技術。 此外,因增設了嚙合套和常嚙合齒輪,使變速器旋轉部分的總慣性力矩增大。因此,目 前這種換檔方法只在某些要求不高檔位及重型貨

22、車變速器上應用。 使用同步器能保證迅速、無沖擊、無噪聲換檔,而與操作技術程度無關,從而提高 了汽車 的加速性、燃油經(jīng)濟性和行駛安全性。同上述兩種方法比較,雖然它有結構復 雜、制造精度要求高、軸向尺寸大等缺點,但仍然得到廣泛應用。本設計的全部前進檔 位均采用同步器換檔。 2.2.3自動脫檔 自動脫檔是變速器的主要故障之一。由于接合齒磨損、變速器軸剛度不足以及振動 等原因都會導致自動脫檔。為解決這個問題,除工藝上采取措施以外,目前在結構上采 取措施行之有效的方案有: 將兩接合齒的嚙合齒位置錯開 ;將嚙合齒套齒座上前齒圈的齒 厚切?。粚⒔雍淆X的工作面設計并加工成斜面,形成倒錐角等等一些措施可以

23、有效防止 脫檔現(xiàn)象的發(fā)生。 2.2.4變速器軸承 作旋轉運動的變速器軸支承在殼體或其它部位的地方以及齒輪與軸不做固定連接 處應安置軸承。變速器軸承常采用圓柱輥子軸承、球軸承、滾針軸承圓錐輥子軸承、滑 動軸套等。至于何處應當采用何種類型的軸承,是受結構限制并隨所承受的載荷特點不 同而不同的。 汽車變速器結構緊湊、尺寸小的特點,采用尺寸大些的軸承受限制,常在布置上有 困難。如變速器的第二軸前端支承在第一軸常嚙合齒輪的內(nèi)腔中,內(nèi)腔尺寸足夠時可布 置圓柱輥子軸承,若空間不足則采用滾針軸承。本設計主要針對的是輕型汽車,故內(nèi)腔 空間比較狹小,只能采用滾針軸承,而第二軸后端采用球軸承,用來承受軸向力和

24、徑向 力。作用在第一軸常嚙合齒輪上的軸向力,經(jīng)第一軸后部軸承傳給變速器殼體,此處用 軸承外圈有擋圈的球軸承。中間軸上齒輪工作時產(chǎn)生的軸向力,原則上由前或后軸承來 承受都可以,但在殼體前端面布置軸承蓋有困難,必須由后端軸承承受軸向力,前端采 用圓柱輥子軸承來承受徑向力,而后端采用外圈有擋圈的球軸承或圓柱輥子軸承,本設 計兩端均采用有擋圈的球軸承。 變速器第一軸、第二軸的后部軸承,以及中間軸前、后軸承,按之直徑系列一般選 用中系列球軸承或圓柱輥子軸承。軸承的直徑根據(jù)變速器中心距確定,并要保證后壁兩 軸承孔之間的距離不小于 6?20mm。 滾針軸承、滑動軸承主要用在齒輪與軸不是固定連接,并要求兩

25、者有相對運動的地 方。滾針軸承有滾動摩擦損失小、傳動效率高、徑向配合間隙小、定位及運轉精度高、 有利于齒輪嚙合等優(yōu)點?;瑒虞S套的徑向配合間隙大、易磨損、間隙增大后影響齒輪的 定位和運轉精度并使工作噪聲增加?;瑒虞S套的優(yōu)點是制造容易、成本低,但為了設計 的整體質(zhì)量,在設計中只采用滾針軸承。 3變速器主要參數(shù)的選擇 變速器設計時選取的各主要參數(shù)將直接影響變速器的技術性能及與汽車發(fā)動機和 其它傳動系匹配,因此,選擇合適的主要參數(shù)就顯得尤為重要。 選取汽車發(fā)動機主要是通過計算汽車的整備質(zhì)量和動力特性來選取。 由于發(fā)動機是 生產(chǎn)成品,所以只要根據(jù)所設計汽車的性能選擇合適的發(fā)動機即可。在選取發(fā)動機

26、時, 一般用適用性系數(shù)Q表示發(fā)動機的適應性,Q值越大,說明發(fā)動機的適應性越好。查文 獻[1,2-1]可知: (Me max n p ) Q (M pnm) 式中:M emax —發(fā)動機最大轉矩N ? m; M p —發(fā)動機額定功率時的轉矩 N ? m; np —發(fā)動機額定功率時的轉速r/min ; nm —發(fā)動機最大轉矩時的轉速r/min。 本設計選擇的發(fā)動機是一汽解放生產(chǎn)的 CA488-1型發(fā)動機,形式為四沖程、直列、 四缸、單頂置凸輪軸化油器式汽油發(fā)動機,工作容積為 2.2L,發(fā)動機在4500r/min時最 大功率59kW,發(fā)動機在2600r/min時的最大扭矩為196

27、N ? m。由上式可得該型發(fā)動機 的適應性系數(shù)Q: (M e max np ) Q (M pnm) 二(196 汽 4500) =125 2600 =2.714 3.1變速器的傳動比范圍、檔位數(shù)及各檔傳動比 設計時首先應根據(jù)汽車的使用條件及要求確定變速器的傳動比范圍、 檔位數(shù)及各檔 傳動比,因為它們對汽車的動力性與燃料經(jīng)濟性都有重要的直接影響。 3.1.1檔數(shù) 變速器的檔數(shù)可在3?20個檔位范圍內(nèi)變化,通常變速器的檔數(shù)在 6檔以下。增加 變速器的檔數(shù),能夠改善汽車的動力性和燃油經(jīng)濟性以及平均車速。檔數(shù)越多,變速器 的結構越復雜,并且使輪廓尺寸和質(zhì)量加大,同時操縱機構復雜,

28、因此,需要設計者綜 合考慮設計要求來選取合適的檔位。 在最近檔傳動比不變的條件下,增加變速器的檔數(shù)會使變速器相鄰的低檔與高檔之 間的傳動比比值小,使換檔工作容易進行,一般要求相鄰檔位之間的傳動比值在 1.8以 下。 近年來,為了降低油耗,變速器的檔數(shù)有增加的趨勢。目前,乘用車一般用 4?5 個檔位的變速器。商用車變速器采用 4?5個檔或多檔。載荷質(zhì)量在2.0?3.5噸的貨車 采用五檔變速器,載質(zhì)量在4.0?8.0噸的貨車采用六檔變速器。本設計主要應用在旅行 車和一噸級輕型貨車上,所以采用四檔變速器。 3.1.2傳動比范圍 表3.1變速器設計原始參數(shù)表 項目 參數(shù) 發(fā)動機最大

29、扭矩 (2600r/mi n) 196N ? m 發(fā)動機最大功率 (4500r/mi n) 59kW 空載整車質(zhì)量 1470kg 滿載整車質(zhì)量 2470kg 滿載時前軸軸何 985kg 滿載時后軸軸何 1389kg 設計最高時速 105km/h 最大爬坡度 15° 主減速比 6.17 車輪滾動半徑 325mm 本設計最咼 變速器的傳動比范圍是指變速器最低檔傳動比與最高檔傳動比的比值 檔位是四檔,傳動比為1.0。影響最低檔傳動比的選取的因素有:發(fā)動機的最大轉矩和 最低穩(wěn)定轉速所要求的汽車最大爬坡能力、驅動輪與路面間的附著力、主減速比和驅動

30、 輪的滾動半徑以及所要求達到的最低穩(wěn)定行駛的車速等。目前乘用車的傳動比范圍在 3.0?4.5之間,輕型商用車的傳動比在 3.0?5.5之間。本設計的一些重要技術參數(shù)見表 3.1 考慮到汽車在平坦硬路面上行駛時的燃油經(jīng)濟性,變速器的最高檔位多為直接檔 (傳動比為1)或超速檔(傳動比小于1)。這時汽車的動力性及燃油經(jīng)濟性由發(fā)動機及 驅動橋減速比決定。變速器低檔(一檔,有時還有爬坡檔)的傳動比則決定了汽車的最 大爬坡度。選擇最低檔傳動比時,應根據(jù)汽車最大爬坡度、驅動車輪與路面的附著力、 汽車的最低穩(wěn)定車速,以及主減速比和驅動車輪的滾動半徑等來綜合考慮。 汽車爬陡坡時車速不高,空氣阻力可忽略,

31、則最大驅動力用于克服輪胎與路面間的 滾動阻力及爬坡阻力,查文獻[1,4-1]可知: Tem aixg1 : 0,T -mg f COSax si n max=mg‘- max (3.1) 式中:m —汽車總質(zhì)量; g —重力加速度; '-max —道路最大阻力系數(shù); rr —驅動車輪的滾動半徑; Temax —發(fā)動機最大轉矩; i 0 —主減速比; T—汽車傳動系的傳動效率; max —最大爬坡度; f—滾動阻力系數(shù); i g1 —變速器一檔傳動比。 則由最大爬坡度要求的變速器一檔傳動比查文獻 [1 , 4-4]可知: igi mg'- max「r T i

32、 emax10 T (3.2) _ 2470 漢 9.8 漢 0.278 漢 0.325 — 196 6.17 0.9 =2.0094 根據(jù)驅動車輪與路面的附著條件有: (3.3) 式中:G2 —汽車滿載靜止于水平路面時驅動橋給地面的載荷; 「一道路的附著系數(shù),計算時取」=0.5 ~ 0.6 求得的變速器一檔傳動比查文獻[1 , 4-4]可知: ig1 G2工 Temaxg T (3.4) 13612.2 0.6 0.325 196 6.17 0.9 =4.0647 根據(jù)本設計要求的具體情況和上述條件可以初選一檔傳動比

33、 i g^ 3.825 3.1.3各檔傳動比 變速器最高檔的傳動比ign與最低檔的傳動比ig1確定以后,中間各檔的傳動比理論上是 按公比查文獻[1 , 4-4]可知: (3.5) 的幾何級數(shù)排列,式中 n為檔位數(shù)(n=4),四檔傳動比ign =1.00。 :ig1 C 二 n -1 q ,ign 4衛(wèi)825 1.00 =1.5639 i2 ii q 3.825 1.5639 = 2.4458 ii 3.825 13 2 2 = 1.5639 q (1.5639) 14 =1.00 實際上各檔傳動比之間的排列與幾何級數(shù)排列略有出入, 因齒數(shù)為

34、整數(shù)且常用檔位 間的公比醫(yī)小些,以便于換檔。另外還要考慮與發(fā)動機參數(shù)的合理配合。因此初選各檔 傳動比: h =3.825 i2 =2.732 i3 =1.397 i1 =1.00 3.2.變速器中心距A的確定 對三軸式變速器而言,其中心距系指第一、第二中心線與中間軸中心線之間的距離。 變速器的中心距對其尺寸及質(zhì)量的大小有直接影響,它也代表著變速器的承載能力。三 軸式變速器的中心距A,可根據(jù)對已有變速器的統(tǒng)計數(shù)據(jù)而得出經(jīng)驗公式進行初選,查 文獻[1,4-4]可知: A = K3 T em a ixj 1 (3.6) 式中:K —中心距系數(shù),轎

35、車取K=8.9~9.3,貨車取K=8.6~9.6,多檔變速器取K=9.5~11; Temax —發(fā)動機最大轉矩,N ? m; i g1 —變速器一檔傳動比; g —變速器的傳動效率,取 g =0.96 本設計變速器的中心距為: A = K3 T emaxi g1 = 9.13 196 3.825 0.96 =81mm 3.3外型尺寸的確定 變速器的橫向外型尺寸,可根據(jù)齒輪直徑以及倒檔中間(過度)齒輪和換檔機構的 布置初步確定。 影響變速器殼體軸向尺寸的因素有檔數(shù)、換檔機構形式以及齒輪形式。 乘用車四檔變速器殼體的軸向尺寸為(3.0~3.4) A。 商用車變速器殼體

36、的軸向尺寸可參考下列數(shù)據(jù)選用: 四檔——(2.2 ~ 2.7)A 五檔——(2.7~ 3.0)A 六檔——(3.2 ~3.5)A 當變速器選用的檔數(shù)和同步器時,上述中心距應取給出范圍的上限。為了檢測方便, 中心距A最好為正數(shù)。 軸向尺寸處取 2.6A=2.6 81 =2 1 mm 3.4齒輪參數(shù) 3.4.1模數(shù) 齒輪模數(shù)是一個重要參數(shù),并且影響它的選取因素又很多,如齒輪的強度、質(zhì)量、 噪聲、工藝要求等。 應該指出的,選取齒輪模數(shù)時一般遵守的原則是: 在變速器中心距相同的條件下,選取較小的模數(shù),就可以增加齒輪的齒數(shù),同時增 加齒寬可使齒輪嚙合的重合度增加,并減少齒輪噪聲,所以

37、為了減少噪聲應合理減小模 數(shù),同時增加齒寬;為使質(zhì)量小些,應該增加模數(shù),同時減小齒寬;從工藝方面考慮, 各檔齒輪應該選用一種模數(shù),而從強度方面考慮,各檔齒輪應有不同的模數(shù);變速器 低檔齒輪應選用大些的模數(shù),其它檔位選用另一種模數(shù)。結合本設計的具體情況查文獻 [2,3-3]可知:一檔齒輪初選 m=2.75mm;其它檔位初選 g = 2.5mm。 342壓力角 齒輪壓力角較小時,重合度較大并降低了齒輪的剛度,為此能減少進入嚙合和退出 嚙合的動載荷,使傳動平穩(wěn),有利于降低噪聲;壓力角大時,可提高輪齒的抗彎強度和 表面接觸強度。因此,理論上對于乘用車為加大重合度以降低噪聲應取用 14.5°、15

38、°、 16° 16.5°等小些的壓力角;對商用車為提高齒輪承載能力應選用 22.5°或25°等大些 的壓力角。 實際上,因國家規(guī)定的標準壓力角為 20。,所以變速器齒輪普遍采用壓力角為 20°。本設計從實際出發(fā),為滿足各項技術要求和工藝性要求查文獻 [2,3-3冋知:壓 力角―=20。 3.4.3螺旋角 斜齒輪在變速器中得到廣泛用。選取斜齒輪的螺旋角,因該注意它對齒輪工作噪聲、 輪齒的強度和軸向力有影響。在齒輪選用大些的螺旋角時,使齒輪嚙合的重合度增加, 因而工作平穩(wěn)、噪聲降低。實驗還證明:隨著螺旋角的增大,齒的強度也相應提高。不 過當螺旋角大于30。時,其抗彎強度驟然下降,而接觸

39、強度仍繼續(xù)上升。因此,從提高 低檔齒輪的抗彎強度出發(fā),以15° ~25。宜;結合本設計技術要求初選螺旋角 1 =25 < 圖3.1中間軸軸向力平衡 斜齒輪傳遞轉矩時,要產(chǎn)生軸向力并作用到軸承上。設計時,應力要求使中間軸上 同時作用的兩對齒輪產(chǎn)生的軸向力平衡,以減小軸承負荷,提高軸承壽命。因此,中間 軸上不同檔位齒輪的螺旋角因該是不一樣的。為使工藝簡便,在中間軸軸向力不大時, 可將螺旋角設計成一樣的,或者僅取為兩種螺旋角。 根據(jù)圖3.1可知,欲使中間軸上兩個斜齒輪的軸向力平衡,需滿足下述條件 Fa! = Fni tan Fa— Fn2 tan 12 由于T二Fniri二Fn2「2

40、,為使兩軸向力平衡,查文獻[2,3-3]可知必須滿足: (3.7) t an1 r1 t an2 r2 式中,F(xiàn)ai、Fa2為作用在中間軸齒輪1、2上的軸向力;Fni、為作用在中間齒輪1、 2上的圓周力;ri、Q的節(jié)圓半徑;T為中間軸傳遞的轉矩。 斜齒輪螺旋角可在下面提供的范圍內(nèi)選用: 乘用車變速器: 兩軸式變速器為20° ~25°; 中間軸式變速器為22° ~34°; 由公式3.7可得 tan :2 r2 tan P2 漢 r2 -arctan一 ri tan25 96..6 109.17 = 22.4218 =22 25 18 3.4.4齒寬 在選

41、擇齒寬時,應該注意齒寬對變速器的軸向尺寸、質(zhì)量、齒輪工作平穩(wěn)、齒輪強 度和齒輪工作時的受力均勻程度等均有影響。 考慮到盡可能縮短變速器的軸向尺寸和減小質(zhì)量, 應該選用較小的齒寬。另一方面, 齒寬減小時斜齒輪傳動平穩(wěn)的優(yōu)點被削弱, 此時雖然可以用增加齒輪螺旋角的方法給予 補償,但這時軸承承受的軸向力增大,使其壽命降低。 通常根據(jù)齒輪模數(shù)m(mn)的大小來選定齒寬: 直齒b=kcm, kc為齒寬系數(shù),取為4.5~8.0, kc =6.0 b = 6.5 275 = 18 mm 斜齒 b = kcmn,kc取為 6.0~8.5,k, =8.0 b = 8.0 2.5 = 20 mm

42、 3.5各檔齒輪齒數(shù)的分配 在初選中心距、齒輪模數(shù)和螺旋角以后,可根據(jù)變速器的檔數(shù)、傳動比和傳動方案 來分配各檔齒輪的齒數(shù)。應該注意的是,各檔齒輪的齒數(shù)比應該盡可能不是整數(shù),以使 齒面磨損均勻。圖3.2為本設計傳動方案結構簡圖。 1 丄一 r 1 5 [] — 7 廠 L A 2 ~4 e — 8 1 ■ i 1 V A X 9 10 圖3.2四檔變速器傳動方案簡圖 3.5.1確定一檔齒輪的齒數(shù) 一檔傳動比,查文獻[2, 3-3]可知: ii Z2Z7 (3.8) Z1Z8

43、 如果Z7和Z8的齒數(shù)確定了,則Z與Zi的傳動比可求出.為了求Z7和Z8的齒數(shù),先 求其齒數(shù)合Zh,查文獻[2,3-3]可知: 直齒 斜齒 計算后取Zh為整數(shù),然后進行大 Zh Zh 2A m 2 A co (3.9) 小齒輪齒數(shù)的分配。中間軸上的一檔小齒輪的齒 數(shù)盡可能取少些,以便使Z7/Z8的傳動比大些,在ii一定的條件下,Z2/Z1的傳動比可分 配小些,使第一軸常嚙合齒輪的齒數(shù)多些,以便在其內(nèi)腔設置第二軸的前軸承保證輪輻 有足夠的厚度。考慮到殼體上的第一軸軸承孔的限制和裝配的可能性,該齒輪齒數(shù)又不 易取多。乘用車中間軸式變速器一檔傳動比 ii =3.5~3.

44、8時,中間軸上一檔齒數(shù)可在 Z8=15~17之間選取,貨車可在12~17之間選用。一檔大齒輪齒數(shù)用z?二Zh - Z8計算求 得。 由公式(3.9)得: 2A Zh m 2 81 -2.75 =59 初選 z8=17,則 z7 二 zh -z8=59-17=42 對中心距進行修正: =59 7.75 2 =81.125mm 3.5.2確定常嚙合齒輪副的齒數(shù) 由公式(3.9)求出常嚙合傳動齒輪的傳動比 (3.10) Z2 ■ Z8 i1 - Zi Z7 而常嚙合傳動齒輪的中心距與一檔齒輪的中心距相等,查文獻 [2, 3-3]可知: (3.11) mn

45、(Zi ? Z2) 2 cos : 解方程式(3.10)和式(3.11 )求z1與z2, Z1、 Z2都應取整數(shù);然后計算一檔傳動比, 最后根據(jù)所確定的輪齒數(shù),按式(3.11)算出精確的螺旋角。 聯(lián)立公式(3.10)和公式(3.11)得: Z2 . Z8 一 =I1 一 Z1 Z7 mn( Z1 Z2) 2c o s 空=3.825 17 解方程組 z1 42 81 二 2?5(Z1 乙) 2cos25° Z =1.548 Z1 Z1 Z2 二 56 解得:丿 z

46、旋角: A = g(Z1 Z2) 2cos : = arcc(ms…2) Z2A = arccos ◎ IL 2 81 3.5.3確定其它各檔的齒數(shù) 二檔齒輪是斜齒輪,螺旋角 = 29.36 =29 21 36 '■6與常嚙合齒輪的'-2不同時,查文獻[2, 3-3]可知: (3.12) Z6 (3.13) mn(Z5 Z6) 2cos 6 初選 飛=20,由公式(3.12)和公式(3.13)得: Z2 mn(Z5 Z6) 2c o S6 解方程組 玉=2.732絲 * Z6 34 81 25(Z5 Z6) [-2cos2

47、0° —=1.7678 “ Z6 么5十Z6 = 61 -39 =22 由公式(3.15)得: 此外,從抵消或減少中間軸上的軸向力出發(fā),查文獻 [2,3-3]可知,還必須滿足下列 關系式: (3.14) tan2 = Z2 口 . Z5) t a n 6 Z1 Z2 Z6 tan : 2 tan 29.36 tan: 6 tan 20 =1.546 z2 z5 34 39 _^0 ?_!) (1 ) Zi z Z6 56 22 =1.583 由于相差不大,滿足設計要求,所以不需要調(diào)整。 三檔齒輪是斜齒輪,螺旋角'-4與常嚙合齒輪的'-

48、2不同時,查文獻[2, 3-3]可知: Z3 . Z1 13 乙 Z2 (3.15) mn(Z5 Z6) 2c o s6 (3.16) 查文獻[2,3-3]可知:4 =26,由公式(3.15)和式(3.16)得: —丨3 Z4 Z2 A_mn(Z3 乙) -2COS4 —1.397鄉(xiāng) 解方程組Z4 34 81 = 25憶+乙) I 2cos26° Z4 互=0.9039 Z4 Z3 乙二 61 解得:丿 Z3 = 29 Z4 =32 此外,從抵消或減少中間軸上的軸向力出發(fā),查文獻 [2,3-3]可知,還必須滿足下列 關系式: t an2

49、 t an4 Z2 Z1 - Z2 (3.17) tan :2 tan :4 tan 29.36 tan26 由公式(3.17)得: =1.153 Z2 Zi Z2 z3 34 (1 卄(1 29 32 由公式(3.19)得 De9 =2A'_De8 _1 =1.157 由于相差不大,滿足設計要求,所以不需要調(diào)整。 3.5.4確定倒檔齒輪齒數(shù) 倒檔齒輪選用的模數(shù)往往與一檔相近。 圖3.7所示倒檔齒輪Z10的齒數(shù),一般在21~28 之間,初選Z10 =26,計算出中間軸與倒檔軸的中心距 A,查文獻[2,3-3]可知: 1 A'

50、= —m(Z8 +Z1o) ( 3.18) 2 由公式(3.18)得: 1 A' m(Z8 Z10) 2 1 2.75 (17 26) =59 mm 為保證倒檔齒輪的嚙合和不產(chǎn)生運動干涉, 齒輪8和9的齒頂圓之間保持有0.5mm 以上的間隙,查文獻[2,3-3]可知,齒輪9的齒頂圓直徑De9應為: (3.19) 學0.5『A' D e9 = 2 A' - De8 - 1 齒輪8的齒頂圓直徑De8 ds=Z8m =17X 2.75 =46.75mm ha = (f0 )m = (1.0 0)2.75 二 2.75 mm De8 =d8 2ha =46.75 2

51、2.75 = 52.25mm =2 X 59.125-52.25-1 =65mm 由De9 "9 2ha可得: d9 二 De9-2ha =65「2 2.75 = 59.5mm Z9 d9 m 59.5 2.75 = 22.6 齒輪圓整至z9二23 變速器倒檔傳動比: Z2 Z10 Z7 i R = Zl Z8 Z9 34 26 42 22 17 23 = 4.316 計算倒檔軸與第二軸的中心距 A”查文獻[2, 3-3]可知:, 1 A 石(Z7 Z9) (3.20) 1 2.75 (42 23) 2 =89mm 確定各檔

52、齒數(shù)后重新計算各檔傳動比 一檔 11 二檔 三檔 i3 Z1 Z8 22 17 Z2 Z5 34 39 Z1 Z6 -22 22 Z2 Z3 34 30 Z2 Z7 -2.74 0 Z1 Z4 i2 22 31 34 42 =3.818 1.496 四檔 14 = 1.00 倒檔 Z2 Z10 Z7 Ir Z1 Z8 Z9 34 26 42 2217 23 = 4.316 4變速器的設計計算 變速器齒輪的損壞形式主要有:輪齒折斷、齒面疲勞剝落(點蝕) 、移動換檔齒輪 端部破壞以及齒面膠合。變速器在工作

53、時,齒輪受到較大的沖擊載荷作用;一對齒輪相 互嚙合,齒面相互擠壓造成齒面點蝕;換檔瞬間在齒輪端部產(chǎn)生沖擊載荷。 所以需要 對齒輪進行計算和校荷。 4.1輪齒設計計算 與其它機械設備用變速器比較,不同用途汽車的變速器齒輪使用條件仍是相似的。 此外,汽車變速器齒輪用的材料、熱處理方法、加工方法、精度級別、支承方式也基本 一致。如汽車變速器齒輪用低碳合金鋼制作,采用剃齒或磨齒精加工,齒輪表面采用滲 碳淬火熱處理工藝,齒輪精度不低于 7級。因此,比用于計算通用齒輪強度公式更為簡 化一些的計算公式來計算汽車齒輪,同樣可以獲得較為準確的結果。 4.1.1齒輪彎曲強度計算 二,查文獻[2,3-4]

54、可知: (1)一檔直齒輪彎曲應力 bty (4.1) 式中: J —彎曲應力(MPa); 2T Ft —圓周力(N),F(xiàn)^— ; Tg為計算載荷(N ? mm); d為節(jié)圓直徑(mm); d K;「一應力集中系數(shù), K_=1.65; Kf —摩擦力影響系數(shù),主動齒輪 Kf=1.1,從動齒輪Kf=0.9; b —齒寬(mm); t —端面齒距,t = ■ m ; —齒形系數(shù),=0.46 因為齒輪節(jié)圓直徑d二mz,式中z為齒數(shù),所以將上述有關參數(shù)帶入式(4.1)后得 2Tg K_K f *程 (°2) 當計算載荷Tg取作用到變速器第一軸上的最大轉距 Tema

55、x時,一、倒檔直齒輪許用 彎曲應力在400~800MPa,查文獻[2,3-4]可知,[j]=600 MPa。 由公式(4.2)得: 2TgK;「Kf w 二 m3zKc 3 = 2 x196x10 X1.65X0.9 二 2.753 43 2 0.46 =225.33MPa<[j] 滿足設計要求。 (2) 二檔斜齒輪彎曲應力 匚w,查文獻[2,3-4]可知: "b^ ( 4.3) btX匚 j —彎曲應力(MPa); 2T Ft —圓周力(N), ; Tg為計算載荷(N ? mm); d為節(jié)圓直徑(mm); d d = mn z c o s ; -斜齒輪

56、螺旋角( ° ),1 =20°; K;「一應力集中系數(shù), b —齒寬(mm); K_=1.50; t —法向齒距,t =二m ; —齒形系數(shù),=0.47 K —重合度影響系數(shù),K =2.0 將上述有關參數(shù)帶入公式( 4.3),整理后得到斜齒輪彎曲應力為: 2Tg cos% ▽ = g ( 44) 兀 z mn e 當計算載荷Tg取作用到變速器第一軸上的最大轉距 Temax時,斜齒輪許用彎曲應力 在 180~350MPa,查文獻[2,3-4]可知,[j]=320 MPa。 由公式(4.4)得: 2Tg cos ■- K _ W _ 3 兀 z mn

57、=2 如96如03 xcos20°x1.50 3 二 40 2.5 0.47 2.0 =299.62MPa<[;「W] 滿足設計要求 4.1.2輪齒接觸應力 (4.5) 式中: 6 —輪齒的接觸應力(MPa); F —齒面上的法向力(N),F(xiàn)=Fj(o ?o B);已為圓周力; :—斜齒輪螺旋角(° ); E —齒輪材料的彈性模量(MPa) , E =2.1 105MPa b —齒輪接觸的實際寬度(mm); 匚—主動齒輪節(jié)點處的曲率半徑(mm),直齒輪'z^rzSin> , 斜齒輪 6 =:[rzsin:「「'cos2 :; 5 —從動齒輪節(jié)點處的曲率半徑(mm

58、),直齒輪二gsin> , 斜齒輪二 rb sin:;- j cos2 :; 將作用在變速器第一軸上的載荷 Temax. 2作為計算載荷時,變速器齒輪的許用接觸 應力]查文獻[2,3-4]可知,見表4.1 表4.1變速器齒輪的許用接觸應力 二j(MPa) 齒 輪 滲碳齒輪 液體碳氮共滲齒 4人 一檔和倒檔齒輪 1900~2000 輪 950~1000 常嚙合齒輪和咼檔齒輪 1300~1400 650~700 計算二軸一檔直齒輪接觸應力二j F』 3 = 1657.5 N 2 0.5 196 10 118.25 F1 COS : 1657.

59、5 cos 20 =1763.87 N 「z = rz sin: = 24.75 sin 20 = 8.465mm ,b = rb sin: - 59.125 sin20 = 20.223mm 由公式(4.5)得: = 0.418 1763.87 2.1 105 \ 18 1 1 、 x J <8.465 20.223 丿 =145.73 MPa<[二 j] 滿足設計要求。 本設計變速器齒輪材料采用 20CrMnTi,并進行滲碳處理,大大提高齒輪的耐磨性 及抗彎曲疲勞和接觸疲勞的能力。 4.2軸的設計計算 變速器在工作時,由于齒輪上的圓周

60、力、徑向力和軸向力作用,變速器的軸要受轉 矩和彎矩。要求變速器的軸應有足夠的剛度和強度。因為剛度不足會產(chǎn)生彎曲變形,結 果破壞了齒輪的正確嚙合,對齒輪的強度、耐磨性和工作噪聲等均有不利影響。因此, 在設計變速器時,其剛度大小應以保證齒輪能有正確的嚙合為前提條件。 (1) 初選軸的直徑 在已知中間軸式變速器的中心距 A時,第二軸和中間軸中部直徑 d - 0.45A,三軸 式變速器的第二軸與中間軸的最大直徑 d可根據(jù)中心距A按下式初選。 d : (0.45 ~ 0.60) A ( mm) 初選二軸中部直徑 d =0.45 81.125 = 36.506mm,圓整至d = 39mm。

61、(2) 按彎扭合成強度條件計算 計算二軸一檔齒輪嚙合的圓周力 Ft、徑向力Fr和軸向力Fa。查文獻[2,3-4]可知: 2T e max (4.6) (4.7) (4.8) 2Temax i tan: d cos : 2Te max ta n - d 式中:i —至計算齒輪的傳動比; d —計算齒輪的節(jié)圓直徑,mm ; :-—節(jié)點處壓力角; -—螺旋角 I II 圖4.1二軸結構簡圖 因為二軸一檔齒輪是直齒輪,所以1 =0,軸向力Fa =0 圖4.1為變速器二軸結構簡圖 V2 V FN 1 H FN FNH1 FNH

62、2 Ft MH Li 圖4.2軸的載荷分析圖 如圖4.2所示,I截面為危險截面 由公式(4.6)計算二軸一檔齒輪所受圓周力 Ft為: d =mz = 2.75 42 =115.5 mm Ft 2T e max 'i 由公式(4. Fr 2Te max i ta n: 3 2 196 10 3.818 - 115.5 =12958.06 N

63、 計算二軸一檔齒輪所受徑向力 Fr為: 垂直力計算: 3 =2 匯 196 漢103 匯 tan20° 115.5 1 =1235.3 N F r L2 F NV1 (L1 L2)= 0 1235.3 28 - FNV1 (168 28)=0 F NV1 1235.3 28 168 28 水平力計算: =176.47N 二 FNV2 二 Fr -FNV1 =1235.3-176.47 = 1058.83N Fa L2 Fnh 1 (L1 L2) = 0 12958.06 28 - FNH1 (168 28) = 0

64、 F NH 1 12958.06 28 168 28 =1851.15N ??? FNH2 二 Fa - FNH1 =12958.06-1851.15 =11106.91N 彎矩計算: M V = FNV1 L1 =176.47 168 = 29646.96N ? mm M H = FNH1 L1 =1851.15 168 = 311052 N ? mm 計算轉矩: 3 二Temax h =196 10 3.818 =748328 N ? mm 作用在齒輪上的Fr和Fa使軸在鉛垂面內(nèi)彎曲變形并產(chǎn)生垂向撓度 fc ;而Ft使軸在 水平

65、面內(nèi)彎曲變形并產(chǎn)生水平撓度 fs。在求得各支點的鉛垂反力和水平反力后, 計算相 應的垂向彎矩Mc和水平彎矩M 則在彎矩和轉矩聯(lián)合作用下的軸向應力為: M 32M r 1 Ww 二 d3 (MPa) (4.8) 式中:M = Jm2 M 2 Tj —計算轉矩,N ? mm; d —軸在計算斷面處的直徑,花鍵處取內(nèi)徑, mm; Ww —彎曲截面系數(shù),mm3; M s —在計算斷面處軸的水平彎矩,N ? mm; Mc —在計算斷面出軸的垂向彎矩,N ? mm; k】一許用應力,在低檔工作時查文獻[2,3-4]可知k】= 400MPa. M 二 M: M:

66、Tj2 二、29646.962 3110522 7483282 = 810942.1 N ? mm 由公式(4.8)得: 口 M 32M Ww 兀d3 32 810942.1 _ 3 二 39 =139.32 MPa.豈 對齒輪工作影響最大的是軸的垂向撓度 fc和軸斷面在水平面內(nèi)的轉角。前者改變 了齒輪中心距并破壞了其正確嚙合;后者使大、小齒輪相互歪斜,如圖( 4.3)所示,易 導致沿齒長方向壓力分布不均勻。 ?:2c a) a)軸在垂直面內(nèi)的變形 b)軸在水平面內(nèi)的變形 b) 圖4.3變速器軸的變形簡圖 變速器齒輪在軸上的位置如圖(4.4)所示時,若軸在垂直面內(nèi)撓度為 fc,在水平 F1a2b2 3EIL (4.9) (4.10) (4.11) 面內(nèi)撓度為fs和轉角為,查文獻[2,3-4]可知: 圖4.4變速器軸的撓度和轉角 查文獻[2, 3-4]可知,軸的合成撓度為: f、= ■. fc2 * ff -0.20mm 計算慣性矩I : (4.12) 4 4 兀d n x 39 I 64 64 = 113503.2 4

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!