福建省2019年中考數(shù)學(xué)總復(fù)習 第六單元 圓 課時訓(xùn)練34 直線與圓的位置關(guān)系練習

上傳人:Sc****h 文檔編號:89504314 上傳時間:2022-05-13 格式:DOCX 頁數(shù):11 大小:479.73KB
收藏 版權(quán)申訴 舉報 下載
福建省2019年中考數(shù)學(xué)總復(fù)習 第六單元 圓 課時訓(xùn)練34 直線與圓的位置關(guān)系練習_第1頁
第1頁 / 共11頁
福建省2019年中考數(shù)學(xué)總復(fù)習 第六單元 圓 課時訓(xùn)練34 直線與圓的位置關(guān)系練習_第2頁
第2頁 / 共11頁
福建省2019年中考數(shù)學(xué)總復(fù)習 第六單元 圓 課時訓(xùn)練34 直線與圓的位置關(guān)系練習_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《福建省2019年中考數(shù)學(xué)總復(fù)習 第六單元 圓 課時訓(xùn)練34 直線與圓的位置關(guān)系練習》由會員分享,可在線閱讀,更多相關(guān)《福建省2019年中考數(shù)學(xué)總復(fù)習 第六單元 圓 課時訓(xùn)練34 直線與圓的位置關(guān)系練習(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、課時訓(xùn)練34 直線與圓的位置關(guān)系 限時:30分鐘 夯實基礎(chǔ) 1.在Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,以點C為圓心,以2.5 cm為半徑畫圓,則☉C與直線AB的位置關(guān)系是(  ) A.相交 B.相切 C.相離 D.不能確定 2.[2017·吉林]如圖K34-1,直線l是☉O的切線,A為切點,B為直線l上一點,連接OB交☉O于點C.若AB=12,OA=5,則BC的長為(  ) 圖K34-1 A.5 B.6

2、C.7 D.8 3.[2017·長春]如圖K34-2,點A,B,C在☉O上,∠ABC=29°,過點C作☉O的切線交OA的延長線于點D,則∠D的大小為(  ) 圖K34-2 A.29° B.32° C.42° D.58° 4.如圖K34-3,在平面直角坐標系中,☉P與x軸相切,與y軸相交于A(0,2),B(0,8),則圓心P的坐標是(  ) 圖K34-3 A.(5,3) B.(5,4) C.(4,5)

3、 D.(3,5) 5.如圖K34-4,☉O為△ABC的內(nèi)切圓,∠C=90°,BO的延長線交AC于點D,若BC=3,CD=1,則☉O的半徑長為   ?。? 圖K34-4 6.如圖K34-5,PC是☉O的直徑,PA切☉O于點P,AO交☉O于點B,連接BC,若∠C=32°,則∠A=    °.? 圖K34-5 7.如圖K34-6,半徑為3的☉O與Rt△AOB的斜邊AB切于點D,交OB于點C,連接CD并延長交直線OA于點E,若∠B=30°,則線段AE的長為   ?。? 圖K34-6 8.[2018·唐山豐南區(qū)二模]如圖K34-7,在Rt△ABC中,∠ACB=9

4、0°,以AC為直徑的☉O與AB邊交于點D,過點D的切線交BC于點E. (1)求證:DE=12BC; (2)若四邊形ODEC是正方形,試判斷△ABC的形狀,并說明理由. 圖K34-7 能力提升 9.[2017·百色]以坐標原點O為圓心,作半徑為2的圓,若直線y=-x+b與☉O相交,則b的取值范圍是(  ) A.0≤b<22 B.-22≤b≤22 C.-23<b<23 D.-22<b<22 10.[2018·滄州三模]如圖K34-8,☉O與等腰直角三角形ABC的兩腰AB,AC相切,且CD與☉O相切于點D.若☉O的半徑

5、為5,且AB=11,則CD=(  ) 圖K34-8 A.5 B.6 C.30 D.112 11.如圖K34-9,已知直線y=34x-3與x軸、y軸分別交于A,B兩點,P是以C(0,1)為圓心,1為半徑的圓上一動點,連接PA,PB,則△PAB面積的最大值是(  ) 圖K34-9 A.8 B.12 C.212 D.172 12.[2017·北京模擬]閱讀下面材料: 在數(shù)學(xué)

6、課上,老師請同學(xué)思考如下問題: 已知在△ABC中,∠A=90°. 求作:☉P,使得點P在邊AC上,且☉P與AB,BC都相切. 圖K34-10 小軒的主要作法如下: 如圖K34-11, (1)作∠ABC的平分線BF,與AC交于點P; (2)以點P為圓心,AP長為半徑作☉P,所以☉P即為所求. 圖K34-11 老師說:“小軒的作法正確.” 請回答:☉P與BC相切的依據(jù)是         .? 13.[2018·福州質(zhì)檢]如圖K34-12,AB是☉O的直徑,點C在☉O上,過點C的直線與AB的延長線相交于點P.若∠COB=2∠PCB,求證:PC是☉O的切線. 圖K3

7、4-12 拓展練習 14.如圖K34-13,△AOB中,∠O=90°,AO=8 cm,BO=6 cm,點C從點A出發(fā),在邊AO上以2 cm/s的速度向點O運動,與此同時,點D從點B出發(fā),在邊BO上以1.5 cm/s的速度向點O運動.過OC的中點E作CD的垂線EF,則當點C運動了    s時,以點C為圓心,1.5 cm為半徑的圓與直線EF相切.? 圖K34-13 15.如圖K34-14,Rt△ABC的內(nèi)切圓☉O與AB,BC,CA分別相切于點D,E,F(xiàn),且∠ACB=90°,AB=5,BC=3,點P在射線AC上運動,過點P作PH⊥AB,垂足為H

8、. (1)直接寫出線段AC,AD及☉O的半徑r的長; (2)設(shè)PH=x,PC=y(tǒng),求y關(guān)于x的函數(shù)表達式; (3)在(2)的條件下,當PH與☉O相切時,求出相應(yīng)的y值. 圖K34-14 參考答案 1.A  2.D 3.B [解析] 連接OC,∵CD是☉O的切線,∴OC⊥CD,即∠OCD=90°, ∵∠COD=2∠ABC=58°,∴∠D=32°. 4.C  5.34  6.26  7.3 8.解:(1)證明:連接DO, ∵∠ACB=90°,AC為直徑,∴EC為☉O的切線.

9、 又∵ED也為☉O的切線,∴EC=ED. 又∵∠EDO=90°,∴∠1+∠2=90°, ∵∠2=∠A,∴∠1+∠A=90°. 又∵∠B+∠A=90°,∴∠1=∠B,∴EB=ED,∴DE=12BC. (2)△ABC是等腰直角三角形. 理由:∵四邊形ODEC為正方形,∴OD=DE=CE=OC,∠DOC=∠ACB=90°. ∵DE=12BC,AC=2OC,∴BC=AC,∴△ABC是等腰直角三角形. 9.D [解析] 如圖,y=-x平分一、四象限,將y=-x向上平移得y=-x+b(b>0),當y=-x+b與圓相切時,b取得最大值,由平移知∠CAO=∠AOC=45°,OC=2,∴OA

10、=b=22,同理將y=-x向下平移得y=-x+b(b<0),當y=-x+b與圓相切時,b取得最小值,此時b=-22,∴當y=-x+b與圓相交時,-22<b<22. 10.B 11.C 12.角平分線上的點到角兩邊距離相等;若圓心到直線的距離等于半徑,則這條直線為圓的切線 [解析] 作PD⊥BC,∵BF平分∠ABC,∠A=90°,∠PDC=90°,∴PA=PD,∴PD是☉P的半徑,∴D在☉P上,∴BC是☉P的切線. 13.證明:證法一:連接AC, ∵CB=CB,∴∠COB=2∠CAB. ∵∠COB=2∠PCB,∴∠CAB=∠PCB. ∵OA=OC, ∴∠OAC=∠O

11、CA. ∵AB是☉O的直徑, ∴∠ACB=90°. ∴∠OCA+∠OCB=90°. ∴∠PCB+∠OCB=90°,即∠OCP=90°. ∴OC⊥CP. ∵OC是☉O的半徑,∴PC是☉O的切線. 證法二:過點O作OD⊥BC于點D,則∠ODC=90°,∴∠OCD+∠COD=90°, ∵OB=OC, ∴OD平分∠COB,∴∠COB=2∠COD, ∵∠COB=2∠PCB,∴∠COD=∠PCB,∴∠PCB+∠OCD=90°, 即∠OCP=90°.∴OC⊥CP. ∵OC是☉O的半徑, ∴PC是☉O的切線. 14.178 [解析] 設(shè)運動時間為t,則AC=2t,BD=1.5t

12、,OC=8-2t,OD=6-1.5t,∴OCOA=ODOB, ∵∠O=∠O,∴△OCD∽△OAB,∴∠OCD=∠A, ∵EF⊥CD,∴∠EFC=∠O=90°,∴△EFC∽△BOA,∴CFCE=OAAB, ∵CE=12OC=4-t,∴CF=45(4-t).當CF=1.5時,直線EF與圓相切,∴45(4-t)=1.5,解得t=178. 15.解:(1)AC=4,AD=3,r=1. (2)∵∠A=∠A,∠AHP=∠ACB=90°, ∴△AHP∽△ACB,∴APAB=PHBC,即AP=53x. 當點P在AC上時,PC=AC-AP, 即y=-53x+40<x≤125. 當點P在AC的延

13、長線上時,PC=AP-AC, 即y=53x-4x>125. ∴y=-53x+40<x≤125,53x-4x>125. (3)當點P在AC上且PH與☉O相切于點M時, 如圖①,連接OM,OD,可得四邊形OMHD為正方形. ∴HD=r=1,AH=AD-HD=3-1=2. 由△AHP∽△ACB,得PHCB=AHAC, ∴x=PH=32, ∴由(2)得y=-53×32+4=32. 當點P在AC的延長線上且PH與☉O相切于點M時,如圖②,連接OM,OD,可得四邊形OMHD為正方形. ∴HD=r=1,AH=AD+HD=3+1=4, 由△AHP∽△ACB,得PHCB=AHAC, ∴x=PH=34×4=3,∴由(2)得y=53×3-4=1. ∴y=32或1. 11

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!