《福建省2019年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 三角形 課時(shí)訓(xùn)練24 相似三角形的應(yīng)用練習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《福建省2019年中考數(shù)學(xué)總復(fù)習(xí) 第四單元 三角形 課時(shí)訓(xùn)練24 相似三角形的應(yīng)用練習(xí)(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、課時(shí)訓(xùn)練24 相似三角形的應(yīng)用
限時(shí):30分鐘
夯實(shí)基礎(chǔ)
1.兩個(gè)相似多邊形的面積比是9∶16,其中較小多邊形的周長(zhǎng)為36 cm,則較大多邊形的周長(zhǎng)為( )
A.48 cm B.54 cm C.56 cm D.64 cm
2.[2018·濱州]在平面直角坐標(biāo)系中,線段AB兩個(gè)端點(diǎn)的坐標(biāo)分別為A(6,8),B(10,2).若以原點(diǎn)O為位似中心,在第一象限內(nèi)將線段AB縮短為原來的12后得到線段CD,則點(diǎn)A的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為( )
A.(5,1) B.(4,3)
2、 C.(3,4) D.(1,5)
3.如圖K24-1,兩個(gè)等邊三角形,兩個(gè)矩形,兩個(gè)正方形,兩個(gè)菱形各成一組,每組中的一個(gè)圖形在另一個(gè)圖形的內(nèi)部,對(duì)應(yīng)邊平行,且對(duì)應(yīng)邊之間的距離都相等,那么兩個(gè)圖形不相似的一組是( )
圖K24-1
4.如圖K24-2,一張矩形紙片ABCD的長(zhǎng)AB=a,寬BC=b.將紙片對(duì)折,折痕為EF,所得矩形AFED與矩形ABCD相似,則a∶b=( )
圖K24-2
A.2∶1 B.2∶1 C.3∶3 D.3
3、∶2
5.[2017·煙臺(tái)]如圖K24-3,在直角坐標(biāo)系中,每個(gè)小方格的邊長(zhǎng)均為1.△AOB與△A'OB'是以原點(diǎn)O為位似中心的位似圖形,且相似比為3∶2,點(diǎn)A,B都在格點(diǎn)上,則點(diǎn)B'的坐標(biāo)是 ?。?
圖K24-3
6.如圖K24-4,已知零件的外徑為30 mm,現(xiàn)用一個(gè)交叉卡鉗(兩條尺長(zhǎng)AC和BD相等,OC=OD)測(cè)量零件的內(nèi)孔直徑AB.若OC∶OA=1∶2,且量得CD=12 mm,則零件的厚度x= mm.?
圖K24-4
7.如圖K24-5,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,四邊形ABCD的每個(gè)頂點(diǎn)都在格點(diǎn)上,延長(zhǎng)DC與過點(diǎn)B的水平網(wǎng)格線交于點(diǎn)E
4、,則線段CE的長(zhǎng)為 ?。?
圖K24-5
8.[2017·涼山州]如圖K24-6,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長(zhǎng)2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過公路路面的中心線時(shí)照明效果最好,此時(shí),路燈的燈柱AB高應(yīng)該設(shè)計(jì)為多少米(結(jié)果保留根號(hào))?
圖K24-6
能力提升
9.[2017·蘭州]如圖K24-7,小明為了測(cè)量一涼亭的高度AB(頂端A到水平地面BD的距離),在涼亭的旁邊放置一個(gè)與涼亭臺(tái)階BC等高的臺(tái)階DE(DE=BC=0.5米,A,B,C三點(diǎn)共線
5、),把一面鏡子水平放置在臺(tái)階上的點(diǎn)G處,測(cè)得CG=15米,然后沿直線CG后退到點(diǎn)E處,這時(shí)恰好在鏡子里看到?jīng)鐾さ捻敹薃,測(cè)得EG=3米,小明身高EF=1.6米,則涼亭的高度AB約為( )
圖K24-7
A.8.5米 B.9米 C.8米 D.10米
10.[2018·揚(yáng)州]如圖K24-8,點(diǎn)A在線段BD上,在BD的同側(cè)作等腰直角三角形ABC和等腰直角三角形ADE,CD與BE,AE分別交于點(diǎn)P,M.對(duì)于下列結(jié)論:①△BAE∽△CAD;②MP·MD=MA·ME;③2CB2=CP·CM.其中正確的是( )
6、
圖K24-8
A.①②③ B.① C.①② D.②③
11.一塊材料的形狀是銳角三角形ABC,邊BC=120 mm,高AD=80 mm,把它加工成正方形零件如圖K24-9①,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.
(1)求證:△AEF∽△ABC;
(2)求這個(gè)正方形零件的邊長(zhǎng);
(3)如果把它加工成矩形零件,如圖②,問這個(gè)矩形的最大面積是多少?
圖K24-9
拓展練習(xí)
12.如圖K24-10①,將正方形紙片ABCD對(duì)折,使AB與CD重合,折
7、痕為EF.如圖②,展開后再折疊一次,使點(diǎn)C與點(diǎn)E重合,折痕為GH,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)M,EM交AB于N.若AD=2,則MN= ?。?
圖K24-10
13.[2018·眉山]如圖K24-11①,在四邊形ABCD中,AC⊥BD于點(diǎn)E,AB=AC=BD,點(diǎn)M為BC中點(diǎn),N為線段AM上的點(diǎn),且MB=MN.
(1)求證:BN平分∠ABE;
(2)若BD=1,連接DN,當(dāng)四邊形DNBC為平行四邊形時(shí),求線段BC的長(zhǎng);
(3)如圖②,若點(diǎn)F為AB的中點(diǎn),連接FN,F(xiàn)M,求證:△MFN∽△BDC.
圖K24-11
參考答案
1.A
2.C
8、[解析] 根據(jù)題意得點(diǎn)C的坐標(biāo)為6×12,8×12,即C(3,4).
3.B 4.B
5.-2,43 [解析] 由題意,將點(diǎn)B的橫、縱坐標(biāo)都乘-23得點(diǎn)B'的坐標(biāo).∵B的坐標(biāo)為(3,-2),∴B'的坐標(biāo)為-2,43.
6.3 7.52
8.解:如圖,延長(zhǎng)OC,AB交于點(diǎn)P.
∵∠ABC=120°,∴∠PBC=60°.
∵∠OCB=∠A=90°,∴∠P=30°.
∵AD=20,∴OA=12AD=10.
∵BC=2,∴在Rt△CPB中,PC=BC·tan60°=23,PB=2BC=4.
∵∠P=∠P,∠PCB=∠A,∴△PCB∽△PAO,∴PCPA=BCOA,
∴P
9、A=PC·OABC=23×102=103,∴AB=PA-PB=103-4.
答:路燈的燈柱AB高應(yīng)該設(shè)計(jì)為(103-4)米.
9.A [解析] 由光線反射可知∠FGE=∠AGC,
又∵∠FEG=∠ACG=90°,∴△FEG∽△ACG,∴FE∶AC=EG∶CG,
∴1.6∶AC=3∶15,∴AC=8,
∴AB=AC+BC=8.5.
10.A [解析] 由題意可知AC=2AB,AD=2AE,∴ACAB=ADAE,∵∠BAC=∠EAD,∴∠BAE=∠CAD,∴△BAE∽△CAD,所以①正確;
∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴MP
10、MA=MEMD,∴MP·MD=MA·ME,所以②正確;
∵∠BEA=∠CDA,∴P,E,D,A四點(diǎn)共圓,∴∠APD=∠AED=90°,
∵∠CAE=180°-∠BAC-∠EAD=90°,∴△CAP∽△CMA,∴AC2=CP·CM,∵AC=2AB=2CB,
∴2CB2=CP·CM,所以③正確.
故選A.
11.解:(1)證明:∵四邊形EGHF為正方形,
∴BC∥EF,∴△AEF∽△ABC.
(2)設(shè)正方形零件的邊長(zhǎng)為a,
在正方形EFHG中,EF∥BC.
∵AD⊥BC,∴AK⊥EF.
∵△AEF∽△ABC,
∴a120=80-a80,解得a=48,
∴正方形零件的邊長(zhǎng)為4
11、8 mm.
(3)設(shè)EG=x,矩形EGHF的面積為y,
∵△AEF∽△ABC,
∴EF120=80-x80,∴EF=32(80-x),
∴y=32(80-x)·x=-32(x-40)2+2400,
∴當(dāng)x=40時(shí),y最大,且最大值為2400,
∴矩形EGHF的最大面積為2400 mm2.
12.13 [解析] 由折疊可知:DE=1,HC=EH,EM=BC,
設(shè)EH=HC=x,則DH=2-x,在Rt△DEH中,
∵EH2=DE2+DH2,∴x2=12+(2-x)2,解得x=54,DH=2-54=34,∵∠A=∠NEH=∠D=90°,
∴∠AEN+∠DEH=∠DEH+∠EHD=
12、90°,
∴∠AEN=∠EHD,∴△NEA∽△EHD,
∴ENAE=EHDH,∴EN1=5434,∴EN=53,
∴MN=EM-EN=BC-EN=2-53=13,故填13.
13.[解析] (1)利用等腰三角形的三線合一性質(zhì)可以得到∠CAM=∠BAM,AM⊥BC,由MN=MB可得∠MNB=
∠MBN,再根據(jù)角的和差關(guān)系及外角性質(zhì)即可證得.
(2)利用(1)中的結(jié)論可證得AN=DN,再依據(jù)平行四邊形性質(zhì),等量代換可得BC=AN,在Rt△AMB中用勾股定理可求得BM的長(zhǎng),即可求得BC的長(zhǎng).
(3)根據(jù)中位線的性質(zhì)及線段的比例關(guān)系可以證得FMBD=NMBC,再依據(jù)中位線的平行關(guān)系和已知
13、垂直關(guān)系,證明∠NMF=∠CBD,從而證明△MFN∽△BDC.
解:(1)證明:∵AB=AC,M為BC中點(diǎn),∴AM⊥BC,∠CAM=∠BAM,
又∵AC⊥BD,∴∠CAM=∠CBE.
即∠MAB=∠CBE.
∵M(jìn)B=MN,∴∠MNB=∠MBN,
∵∠MNB=∠MAB+∠NBA,∠MBN=∠CBD+∠DBN,
∴∠DBN=∠NBA,即BN平分∠ABE.
(2)在△ABN與△DBN中,AB=DB,∠ABN=∠DBN,BN=BN,
∴△ABN≌△DBN,∴DN=AN.∵四邊形DNBC為平行四邊形,∴BC=DN,∴AN=BC.在Rt△AMB中,設(shè)BM=x,則MN=x,AN=2x,
則x2+(3x)2=12,解得:x=1010(負(fù)值舍去),
∴BC=105.
(3)證明:∵點(diǎn)F,M分別是AB,BC的中點(diǎn),
∴FM∥AC,F(xiàn)M=12AC.
∵AC=BD,∴FM=12BD,
即FMBD=12.∵△BMN是等腰直角三角形,
∴NM=BM=12BC,即NMBC=12,
∴FMBD=NMBC.∵AM⊥BC,∴∠NMF+∠FMB=90°.
∵FM∥AC,∴∠ACB=∠FMB.
∵∠CEB=90°,∴∠ACB+∠CBD=90°.
∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.
∴△MFN∽△BDC.
9