《2022年高三數(shù)學(xué)總復(fù)習(xí) 兩角和與差的余弦教案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)總復(fù)習(xí) 兩角和與差的余弦教案 理(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高三數(shù)學(xué)總復(fù)習(xí) 兩角和與差的余弦教案 理
教材分析
這節(jié)內(nèi)容是在掌握了任意角的三角函數(shù)的概念、向量的坐標(biāo)表示以及向量數(shù)量積的坐標(biāo)表示的基礎(chǔ)上,進(jìn)一步研究用單角的三角函數(shù)表示的兩角和與差的三角函數(shù).這些內(nèi)容在高等數(shù)學(xué)、電功學(xué)、力學(xué)、機(jī)械設(shè)計(jì)與制造等方面有著廣泛的應(yīng)用,因此要求學(xué)生切實(shí)學(xué)好,并能熟練的應(yīng)用,以便為今后的學(xué)習(xí)打下良好的基礎(chǔ).
“兩角差的余弦公式”在教科書(shū)中采用了一種易于教學(xué)的推導(dǎo)方法,即先借助于單位圓中的三角函數(shù)線,推出α,β,α-β均為銳角時(shí)成立.對(duì)于α,β為任意角的情況,教材運(yùn)用向量的知識(shí)進(jìn)行了探究.同時(shí),補(bǔ)充了用向量的方法推導(dǎo)過(guò)程中的不嚴(yán)謹(jǐn)之處,這樣,兩角差的余
2、弦公式便具有了一般性.
這節(jié)課的重點(diǎn)是兩角差的余弦公式的推導(dǎo),難點(diǎn)是把公式中的α,β角推廣到任意角.
教學(xué)目標(biāo)
1. 通過(guò)對(duì)兩角差的余弦公式的探究過(guò)程,培養(yǎng)學(xué)生通過(guò)交流,探索,發(fā)現(xiàn)和獲得新知識(shí)的能力.
2. 通過(guò)兩角差的余弦公式的推導(dǎo),體會(huì)知識(shí)的發(fā)生、發(fā)展的過(guò)程和初步的應(yīng)用過(guò)程,培養(yǎng)學(xué)生科學(xué)的思維方法和勇于探索的科學(xué)精神.
3. 能正確運(yùn)用兩角差的余弦公式進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn)、求值和恒等式證明.
任務(wù)分析
這節(jié)內(nèi)容以問(wèn)題情景中的問(wèn)題作為教學(xué)的出發(fā)點(diǎn),利用單位圓中的三角函數(shù)線和平面向量的數(shù)量積的概念推導(dǎo)出結(jié)論,并不斷補(bǔ)充推導(dǎo)過(guò)程中的不嚴(yán)謹(jǐn)之處.推導(dǎo)過(guò)程采用了從特殊到一般逐層遞
3、進(jìn)的思維方法,學(xué)生易于接受.整個(gè)過(guò)程始終結(jié)合單位圓,以強(qiáng)調(diào)其直觀性.對(duì)于公式中的α和β角要強(qiáng)調(diào)其任意性.?dāng)?shù)學(xué)中要注意運(yùn)用啟發(fā)式,切忌把結(jié)果直接告訴學(xué)生,盡量讓學(xué)生通過(guò)觀察、思考和探索,自己發(fā)現(xiàn)公式,使學(xué)生充分體會(huì)到成功的喜悅,進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)他們學(xué)習(xí)的積極性,從而使其自覺(jué)主動(dòng)地學(xué)習(xí).
教學(xué)過(guò)程
一、問(wèn)題情景
我們已經(jīng)學(xué)過(guò)誘導(dǎo)公式,如
可以這樣來(lái)認(rèn)識(shí)以上公式:把角α轉(zhuǎn)動(dòng),則所得角α+的正弦、余弦分別等于cosα和-sinα.把角α轉(zhuǎn)動(dòng)π,則所得角α+π的正弦、余弦分別等于-sinα和-cosα.
由此,使我們想到一個(gè)一般性的問(wèn)題:如果把角α的終邊轉(zhuǎn)動(dòng)β(度或弧度),那
4、么所得角α+β的正弦、余弦如何用α或β的正弦、余弦來(lái)表示呢?
出示一個(gè)實(shí)際問(wèn)題:
右圖41-1是架在小河邊的一座吊橋的示意圖.吊橋長(zhǎng)AB=a(m),A是支點(diǎn),在河的左岸.點(diǎn)C在河的右岸,地勢(shì)比A點(diǎn)高.AD表示水平線,∠DAC=α,α為定值.∠CAB=β,β隨吊橋的起降而變化.在吊橋起降的過(guò)程中,如何確定點(diǎn)B離開(kāi)水平線AD的高度BE?
由圖可知BE=asin(α+β).
我們的問(wèn)題是:如何用α和β的三角函數(shù)來(lái)表示sin(α+β).如果α+β為銳角,你能由α,β的正弦、余弦求出sin(α+β)嗎?
引導(dǎo)學(xué)生分析:事實(shí)上,我們?cè)谘芯咳呛瘮?shù)的變形或計(jì)算時(shí),經(jīng)常提出這樣的問(wèn)題:能否用α,
5、β的三角函數(shù)去表示α±β的三角函數(shù)?為了解決這類問(wèn)題,本節(jié)首先來(lái)探索α-β的余弦與α,β的函數(shù)關(guān)系式.
更一般地說(shuō),對(duì)于任意角α,β,能不能用α,β的三角函數(shù)值把α+β或α-β的三角函數(shù)值表示出來(lái)呢?
二、建立模型
1. 探 究
(1)猜想:cos(α-β)=cosα-cosβ.
(2)引導(dǎo)學(xué)生通過(guò)特例否定這一猜想.
例如,α=60°,β=30°,可以發(fā)現(xiàn),左邊=cos(60°-30°)=cos30°=,右邊=cos60°-cos30°=-.顯然,對(duì)任意角α,β,cos(α-β)=cosα-cosβ不成立.
(3)再引導(dǎo)學(xué)生從道理上否定這一猜想.
不妨設(shè)α,β,α-β均為銳角,
6、則α-β<α,則cos(α-β)>cosα.又cosβ>0,所以cos(α-β)>cosα-cosβ.
2. 分析討論
(1)如何把α,β,α-β角的三角函數(shù)值之間建立起關(guān)系?要獲得相應(yīng)的表達(dá)式需要哪些已學(xué)過(guò)的知識(shí)?
(2)由三角函數(shù)線的定義可知,這些角的三角函數(shù)值都與單位圓中的某些有向線段有關(guān)系,那么,這些有向線段之間是否有關(guān)系呢?
3. 教師明晰
通過(guò)學(xué)生的討論,教師引導(dǎo)學(xué)生作出以下推理:
設(shè)角α的終邊與單位圓的交點(diǎn)為P1,∠POP1=β,則∠POx=α-β.
過(guò)點(diǎn)P作PM⊥x軸,垂足為M,那么,OM即為α-β角的余弦線,這里要用表示α,β的正弦、余弦的線段來(lái)表示OM.
過(guò)
7、點(diǎn)P作PA⊥OP1,垂足為A,過(guò)點(diǎn)A作AB⊥x軸,垂足為B,再過(guò)點(diǎn)P作PC⊥AB,垂足為C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是
OM=OB+BM=OB+CP=OAcosα+APsinα=
cosβcosα+sinβsinα.
4. 提出問(wèn)題,組織學(xué)生討論
(1)當(dāng)α,β,α-β為任意角時(shí),上述推導(dǎo)過(guò)程還能成立嗎?
若要說(shuō)明此結(jié)果是否對(duì)任意角α,β都成立,還要做不少推廣工作,可引導(dǎo)學(xué)生獨(dú)立思考.
事實(shí)上,根據(jù)誘導(dǎo)公式,總可以把α,β的三角函數(shù)化為(0,)內(nèi)的三角函數(shù),再根據(jù)cos(-β)=cosβ,把α-β的余弦,化為銳角的余弦.因此,
三、
8、解釋?xiě)?yīng)用
[例 題]
1. 求cos15°及cos105°的值.
分析:本題關(guān)鍵是將15°角分成45°與30°的差或者分解成60°與45°的差,再利用兩角差的余弦公式即可求解.對(duì)于cos105°,可進(jìn)行類似地處理,cos105°=cos(60°+45°).
2. 已知sinα=,α∈(,π),cosβ=-,且β是第三象限的角,求cos(α+β)的值.
分析:觀察公式Cα+β與本題已知條件應(yīng)先計(jì)算出cosα,cosβ,再代入公式求值.求cosα,cosβ的值可借助于同角三角函數(shù)的平方關(guān)系,并注意α,β的取值范圍來(lái)求解.
[練 習(xí)]
1. (1)求sin75°的值.
(2)求cos
9、75°cos105°+sin75°sin105°的值.
(3)化簡(jiǎn)cos(A+B)cosB+sin(A+B)sinB.
(4)求cos215°-sin215°的值.
分析:對(duì)于(1),可先用誘導(dǎo)公式化sin75°為cos15°,再用例題1中的結(jié)果即可.對(duì)于(2),逆向使用公式Cα-β,即可將原式化為cos30°.對(duì)于(3),可以把A+B角看成一個(gè)整體,去替換Cα-β中的α角,用B角替換β角.
2. (1)求證:cos(-α) =sinα.
(2)已知sinθ=,且θ為第二象限角,求cos(θ-)的值.
(3)已知sin(30°+α)=,60°<α<150°,求cosα.
分析:(
10、1)和(差)公式可看成誘導(dǎo)公式的推廣,誘導(dǎo)公式是和(差)公式的特例.
(2)在三角函數(shù)求值問(wèn)題中,變角是一種常用的技巧,α=(30°+α)-30°,這樣可充分利用題中已知的三角函數(shù)值.
3. 化簡(jiǎn)cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°).
分析:這里可以把角36°+α與α-54°均看成單角,進(jìn)而直接運(yùn)用公式Cα-β,不必將各式展開(kāi)后再計(jì)算.
分析:本題是一道綜合題,由于cos(α-β)=cosαcosβ+sinαsinβ,欲求cos(α-β)的值,只須將已知兩式平方相加求出cosαcosβ+sinαsinβ即可.
四、拓展延伸
1. 由
11、任意角三角函數(shù)定義,可知角α,β的終邊與單位圓交點(diǎn)的坐標(biāo)均可用α,β的三角函數(shù)表示,即α-β角與,兩向量的夾角有關(guān),那么能否用向量的有關(guān)知識(shí)來(lái)推導(dǎo)公式Cα-β呢?
教師引導(dǎo)學(xué)生分析:在平面直角坐標(biāo)系xOy內(nèi)作單位圓O,以O(shè)x為始邊作角α,β,它們的終邊與單位圓的交點(diǎn)為A,B,則=(cosα,sinα),=(cosβ,sinβ).
由向量數(shù)量積的概念,有
·=||||c(diǎn)os(α-β)=cos(α-β).
由向量的數(shù)量積的坐標(biāo)表示,有
·=cosαcosβ+sinαsinβ.
于是,有
cos(α-β)=cosαcosβ+sinαsinβ.
依據(jù)向量數(shù)量積的概念,角α-β必須符合0
12、≤α-β≤π,即在此條件下,以上推導(dǎo)才是正確的.
由于α,β都是任意角,α-β也是任意角,因此,須研究α-β為任意角時(shí),以上推導(dǎo)是否正確.
當(dāng)α-β為任意角時(shí),由誘導(dǎo)公式總可以找到一個(gè)角θ,θ∈[0,2π),使cosθ=cos(α-β).
若θ∈[0,π],則·=cosθ=cos(α-β);
若θ∈[π,2π],則2π-θ∈[0,π],且
·=cos(2π-θ)=cosθ=cos(α-β).
于是,對(duì)于任意角α,β都有
2. 教師提出進(jìn)一步拓展性問(wèn)題:本節(jié)問(wèn)題情景中,涉及如何用sinα,sinβ,cosα,cosβ來(lái)表示sin(α+β)的問(wèn)題,試探索與研究sin(α+β)的表
13、達(dá)式.
點(diǎn) 評(píng)
這篇案例設(shè)計(jì)完整,思路清晰.案例首先通過(guò)問(wèn)題情景闡述了兩角和、差、三角函數(shù)公式的產(chǎn)生背景,然后通過(guò)組織學(xué)生分析,討論,并借助于單位圓中的三角函數(shù)線對(duì)α,β,α-β為銳角時(shí)給出證明,進(jìn)而用向量知識(shí)探究任意角的情形.這些均體現(xiàn)了數(shù)學(xué)中從特殊到一般的思想方法,符合新課改的基本理念.同時(shí),例題與練習(xí)由淺入深,完整,全面.
總之,關(guān)注學(xué)生的已有基礎(chǔ),充分利用歸納、類比等方法激發(fā)學(xué)生進(jìn)一步探究的欲望,建立Cα±β模型.這種設(shè)計(jì)思路有利于學(xué)生數(shù)學(xué)思維水平的提高,同時(shí)及時(shí)鞏固,應(yīng)用,拓展延伸,體現(xiàn)了對(duì)傳統(tǒng)的中國(guó)式數(shù)學(xué)教學(xué)精華的繼承.如果能在結(jié)束時(shí)再創(chuàng)設(shè)引導(dǎo)學(xué)生自我小結(jié)、反思的環(huán)節(jié),可能會(huì)錦上添花.