機械式回轉式擰瓶機的設計及工程分析【說明書+CAD+UG】
機械式回轉式擰瓶機的設計及工程分析【說明書+CAD+UG】,說明書+CAD+UG,機械式,回轉,式擰瓶機,設計,工程,分析,說明書,仿單,cad,ug
編號
畢業(yè)設計(論文)
題目: 機械式擰瓶機的設計及工程分析
信機 系 機械工程及自動化 專業(yè)
學 號:
學生姓名:
指導教師:
3
誠 信 承 諾 書
本人鄭重聲明:所呈交的畢業(yè)設計(論文) 機械式擰瓶機的設計及工程分析 是本人在導師的指導下獨立進行研究所取得的成果,其內容除了在畢業(yè)設計(論文)中特別加以標注引用,表示致謝的內容外,本畢業(yè)設計(論文)不包含任何其他個人、集體已發(fā)表或撰寫的成果作品。
班 級:
學 號:
作者姓名:
信 機 系 機械工程及自動化 專業(yè)
畢 業(yè) 設 計論 文 任 務 書
一、題目及專題:
1、題目 機械式擰瓶機的設計及工程分析
2、專題
二、課題來源及選題依據(jù)
擰瓶機是自動擰瓶生產(chǎn)線的主要設備之一,用于玻璃瓶或PET瓶的螺紋蓋封口。隨著社會的發(fā)展和人民生活水平的提高,人們對產(chǎn)品的包裝質量的要求也越來越高。由于螺紋蓋具有封口快捷,開啟方便及開啟瓶后又可重新封好等優(yōu)點,使其在許多產(chǎn)品的包裝中應用越來越廣泛,諸如飲料,酒類,調味料,化妝品及藥品等瓶包裝的封口就大量采用螺紋蓋封口。目前現(xiàn)有的國產(chǎn)同類機型的封蓋機的產(chǎn)量,速度和自動化程度都相對落后。為了適應現(xiàn)代包裝機高速,高效和高可靠性生產(chǎn)的需要,研制了一種回轉式擰瓶機,該機采用多工位回轉式結構,機電氣一體化,具有效率高,速度快,可靠性好和自動化程度高等優(yōu)點。
三、本設計(論文或其他)應達到的要求:
① 了解數(shù)擰瓶機的工作原理,國內外的研究發(fā)展現(xiàn)狀;
② 完成擰瓶機總體方案設計;
③ 完成零部件的選型計算、結構強度校核;
④ 熟練掌握有關計算機繪圖軟件,并繪制裝配圖和零件圖紙,折合 A0不少于2.5張;
⑤ 完成設計說明書的撰寫,并翻譯外文資料1篇。
四、接受任務學生:
五、開始及完成日期:
自
六、設計(論文)指導(或顧問):
指導教師 簽名
簽名
簽名
教研室主任
〔學科組組長研究所所長〕 簽名
系主任 簽名
2012年11月12日
英文原文
Applications
4.1 Introduction
This chapter demonstrates the scope of the method developed for the three-dimensional analysis of a screw compressor. The CFD package used in this case was COMET developed by ICCM GmbH Hamburg, today a part of CD-Adapco. The analysis of the flow and performance characteristics of a number of types of screw machines is performed to demonstrate a variety of parameters used for grid generation and calculation.
The first example is concerned with a dry air screw compressor. A common compressor casing is used with two alternative pairs of rotors. The rotors have identical overall geometric properties but different lobe profiles. The application of the adaptation technique enables convenient grid generation for geometrically different rotors. The results obtained by three dimensional modelling are compared with those derived from a one-dimensional model, previously verified by comparison with experimental data..The relative advantages of each rotor profile are demonstrated.
The second example shows the application of three dimensional flow analysis to the simulation of an oil injected air compressor. The results, thus obtained, are compared with test results obtained by the authors from a compressor and test rig, designed and built at City University. They are presented in the form of both integral parameters and a p-indicator diagram. Calculations based on the assumptions of the laminar flow are compared to those of turbulent flow. The effect of grid size on the results is also considered and shown here.
The third example gives the analysis of an oil injected compressor in an ammonia refrigeration plant.This utilises the real fluid property subroutines in the process calculations and demonstrates the blow hole area and the leakage flow through the compressor clearances.
The fourth example presents two cases, one of a dry screw compressor to show the influence of thermal expansion of the rotor on screw compressor performance and one of a high pressure oil-flooded screw compressor to show the influence of high pressure loads upon the compressor performance.
4.2 Flow in a Dry Screw Compressor
Dry screw compressors are commonly used to produce pressurised air, free of any oil. A typical example of such a machine, similar in configuration to the compressor modelled, is shown in Figure 4-1. This is a single stage machine with 4 male and 6 female rotor lobes. The male and female rotor outer diameters are 142.380 mm and 135.820 mm respectively, while their centre lines are 108.4 mm apart. The rotor length to main diameter ratio l/d=1.77. Thus, the rotor length is 252.0 mm. The male rotor with wrap angle =248.40 is driven at a speed of 6000 rpm by an electric motor through a gearbox. The male and female rotors are synchronised through timing gears with the same ratio as that of the compressor rotor lobes i.e. 1.5. The female rotor speed is therefore 4000 rpm. The male rotor tip speed is then 44.7m/s, which is a relatively low value for a dry air compressor. The working chamber is sealed from its bearings by a combination of lip and labyrinth seals.
Each rotor is supported by one radial and one axial bearing, on the discharge end, and one radial bearing on the suction end of the compressor. The bearings are loaded by a high frequency force, which varies due to the pressure change within the working chamber. Both radial and axial forces, as well as the torque change with a frequency of 4 times the rotational speed. This corresponds to 400Hz and coincides with the number of working cycles that occur within the compressor per unit time.
Figure 4-1 Cross section of a dry screw compressor
The compressor takes in air from the atmosphere and discharges it to a receiver at a constant output pressure of 3 bar. Although the pressure rise is moderate, leakage through radial gaps of 150 m is substantial. In many studies and modelling ,procedures, volumetric losses are assumed to be a linear function of the cross sectional area and the square root of pressure difference, assuming that the interlobe clearance is kept more or less constant by the synchronising gears. The leakage through the clearances is then proportional to the clearance gap and the length of the leakage line. However, a large clearance gap is needed to prevent contact with the housing caused by rotor deformation due to the pressure and temperature changes within the working chamber. Hence, the only way to reduce leakage is to minimise the length of the sealing line. This can be achieved by careful design of the screw rotor profile. Although minimising,leakage is an important means of improving a screw compressor efficiency, it is not the only one. Another is to increase the flow area between the lobes and thereby increase the compressor flow capacity, thereby reducing the relative effect of leakage. Modern profile generation methods take these various effects into account by means of optimisation procedures which lead to enlargement of the male rotor interlobes and reduction in the female rotor lobes. The female rotor lobes are thereby strengthened and their deformation thus reduced.
To demonstrate the improvements possible from rotor profile optimisation, a three dimensional flow analysis has been carried out for two different rotor profiles within the same compressor casing, as shown in Figure 4-2. Both rotors are of the “N” type and rack generated.
Figure 4-2‘N’ Rotors, Case-1 upper, Case-2 lower
Case 1 is an older design, similar in shape to SRM “D” rotors. Its features imply that there is a large torque on the female rotor, the sealing line is relatively long and the female lobes are relatively weak.
Case 2, shown on the bottom of Figure 4-2, has rotors optimised for operating on dry air. The female rotor is stronger and the male rotor is weaker. This results in higher delivery, a relatively shorter sealing line and less torque on the female rotor. All these features help to improve screw compressor performance.
The results of these two analyses are presented in the form of velocity distributions in the planes defined by cross-sections A-A and B-B, shown in Figure 4-1.
In the case of this study, the effect of rotor profile changes on compressor integral performance parameters can be predicted fairly accurately with one-dimensional models, even if some of the detailed assumptions made in such analytical models are inaccurate. Hence the integral results obtained from the three-dimensional analysis are compared with those from a one-dimensional model.
4.2.1 Grid Generation for a Dry Screw Compressor
In Case-1, the rotors are mapped with 52 numerical cells along the interlobe on the male rotor and 36 cells along each interlobe on the female rotor in the circumferential direction. This gives 208 and 216 numerical cells respectively in the circumferential direction for the male and female rotors. A total of 6 cells in the radial direction and 97 cells in the axial direction is specified for both rotors. This arrangement results in a numerical mesh with 327090 cells for the entire machine. The cross section for the Case-1 rotors is shown in Figure 4-3. The female rotor is relatively thin and has a large radius on the lobe tip. Therefore, it is more easily mapped than in Case-2 where the tip radius is smaller, as shown in Figure 4-4.
Figure 4-3 Cross section through the numerical mesh for Case-1 rotors
The rotors in Case 2 are mapped with 60 cells along the male rotor lobe and 40 cells along the female lobe, which gives 240 cells along both rotors in the circumferential direction. In the radial direction, the rotors are mapped with 6 cells while 111 cells are selected for mapping along the rotor axis. Thus, the entire working chamber for this compressor has 406570 cells. In this case, different mesh sizes are applied and different criteria are chosen for the boundary adaptation of these rotors. The main adaptation criterion selected for the rotors is the local radius curvature with a grid point ratio of 0.3 to obtain the desired quality of distribution along the rotor boundaries. By this means, the more curved rotors are mapped with only a slight increase in the grid size to obtain a reasonable value of the grid aspect ratio. To obtain a similar grid aspect ratio without adaptation, 85 cells would have been required instead of 60 along one interlobe on the female rotor. This would give 510 cells in the circumferential direction on each of rotors. If the number of cells in the radial direction is also increased to be 8 instead of 6 but the number of cells along axis is kept constant, the entire grid would contain more then a million cells which would, in turn, result in a significantly longer calculation time and an increased requirement for computer memory.
Figure 4-4 Cross section through the numerical mesh for Case-2 rotors
4.2.2 Mathematical Model for a Dry Screw Compressor
The mathematical model used is based on the momentum, energy and mass conservation equations as given in Chapter 2. The equation for space law conservation is calculated in the model in order to obtain cell face velocities caused by the mesh movement. The system of equations is closed by Stoke’s, Fourier’s and Fick’s laws and the equation of state for an ideal gas. This defines all the properties needed for the solution of the governing equations.
4.2.3 Comparison of the Two Different Rotor Profiles
The results obtained for both Case 1 and Case 2 compressors are presented here. To establish the full range of working conditions and to obtain an increase of pressure from 1 to 3 bars between the compressor suction and discharge, 15 time steps were required. A further 25 time steps were then needed to complete the full compressor cycle. Each time step needed about 30 minutes running time on an 800 MHz AMD Athlon processor. The computer memory required was about 400 MB.
In Figure 4-5 the velocity vectors in the cross and axial sections are compared. The top diagram is given for Case-1 rotors and the bottom one for Case-2. As may be seen, the Case 2 rotors realised a smoother velocity distribution than the Case 1 rotors. This may have some advantage and could have increased the compressor adiabatic efficiency by reduction in flow drag losses. In both cases, recirculation within the entrapped working chamber occurs as consequence of the drag forces in the air as shown in the figure. On the other hand, different fluid flow patterns can be observed in the suction port. The velocities within the working chambers and the suction and discharge ports are kept relatively low while the flow through the clearance gaps changes rapidly and easily reaches sonic velocity.
Figure 4-5 Velocity field in the compressor cross section for Case1 and Case2 rotors
Figure 4-6 Velocity field in the compressor axial section for Case1 and Case2 rotors
These differences are confirmed in the view of the vertical compressor section through the female rotor axis, shown in Figure 4-6. In Case 2, lower velocities are achieved not only in the working chamber but also in the suction and discharge ports. In the suction port, this is significant because of the fluid recirculation which appears at the end of the port. This recirculation causes losses which cannot be recovered later in the compression process. Therefore, many compressors are designed with only an axial port instead of both, radial and axial ports. Such a situation reduces suction dynamic losses caused by recirculation but, on the other hand, increases the velocity in the suction chamber which in turn decreases efficiency. Some of these problems can be avoided only by the design of screw compressor rotors with larger lobes and a bigger swept volume and a shape which allows the suction process to be completed more easily. However, rotor profile design based on existing one-dimensional procedures neglects flow variations in the ports and hence is inferior for this purpose. In such cases, only a full three dimensional approach such as this, will be effective.
中文譯文
應用
4.1簡介
本章介紹了對螺桿壓縮機的三維分析開發(fā)的方法的范圍。在這種情況下,采用由ICCM GmbH Hamburg開發(fā)的CFD軟件,現(xiàn)在是CD-Adapco的一部分。對一定數(shù)量的螺桿機器的類型的流程和性能特性的分析是用來展示用于柵格一代和演算的各種各樣的參量。
第一個例子是關于一個干螺桿空氣壓縮機。一個常見的壓縮機外殼是使用兩個可選雙轉子。轉子具有相同的整體幾何性質但是有不同的葉剖面。適應技術的應用可以方便使網(wǎng)格生成幾何不同的轉子。三維模型得到的結果與從一個一維模型獲得的那些比較,以前被核實與實驗數(shù)據(jù)相比。演示了每個轉子配置文件的相對優(yōu)勢。
第二個例子顯示了三維流動分析模擬注入油空氣壓縮機的應用。如此得到的結果與從壓縮機的作者和試驗臺,設計和建造城市大學通過以下方式獲得的測試結果進行了比較。他們提出了兩個積分的形式參數(shù)和一個p-α示意圖。計算基于的假設是層流與湍流流動的那些進行比較。網(wǎng)格尺寸對計算結果的影響也被認為是在這里。
第三個例子給出了油中注入的制冷壓縮機的分析。這利用了現(xiàn)實的流體屬性的過程中計算的子程序,并演示吹孔區(qū)域和通過壓縮機的間隙泄漏流。
第四個例子呈現(xiàn)兩種情況,一是顯示的干式螺桿壓縮機的轉子的螺桿式壓縮機的性能,熱膨脹的影響和高壓油沒螺桿式壓縮機中的一個,以顯示的影響高壓負荷時壓縮機的性能。
4.2干燥螺絲壓縮機的流程
干燥螺絲壓縮機是常用的生產(chǎn)被加壓的空氣,不需要任何油。這樣機器的一個典型的例子,在配置與被塑造的壓縮機相似,在表4-1顯示。這是一個有4個陽性和6個陰性轉子葉單級機。陽性和陰性的轉子外直徑分別為142.380毫米和135.820毫米,而他們的中心線108.4毫米。轉子長度的主直徑比L / D = 1.77。因此,轉子長度252毫米。陽轉子與包角= 248.40在每分鐘6000轉的速度驅動,通過齒輪箱由一個電動馬達。陽性和陰性的轉子通過定時齒輪同步與壓縮機轉子裂片即1.5的相同比率。因此,陰性的轉子轉速為每分鐘4000轉。陽轉子葉尖速度然后44.7米/ s,這是相對低的值,為干燥的空氣壓縮機。工作腔密封從它的軸承,由唇,迷宮式密封的組合。每個轉子是由一個徑向和軸向軸承和一個徑向軸承在放電結束后吸入端的壓縮機。軸承是由一個高頻力加載,它會因在工作腔的壓力變化而變化。徑向和軸向的力,以及頻率的旋轉速度的4倍的轉矩變化。這對應于400Hz和發(fā)生在壓縮機內的每單位時間的工作周期數(shù)一致。
壓縮機以空氣從大氣排到一個接收器3個恒定的輸出壓力。雖然壓力上升是溫和的,經(jīng)過150徑向間隙泄漏是巨大的。在許多研究和建模過程中,容積損失被認為是一個線性函數(shù)的橫截面積和壓差的平方根假設葉片間間隙保持或多或少不變的同步齒輪。然后,通過該間隙的泄漏間隙和泄漏管路的長度成比例。然而,一個大的間隙是必要的,以防止轉子變形,由于工作腔內的壓力和溫度的變化所造成的與殼體接觸。因此,減少泄漏的唯一方法是將密封線長度。這可以通過仔細的螺桿轉子型線設計實現(xiàn)。盡管最小化泄漏是一個重要的手
圖4-1 干式螺桿壓縮機的截面
段,提高了螺桿壓縮機效率,卻不是唯一的一個。另一個是提高葉流之間的區(qū)域,從而提高壓氣機葉流量,從而減少了相對效應的泄漏?,F(xiàn)代配置生成方法把這些不同的影響考慮通過優(yōu)化程序,導致擴大陽轉子葉片和減少陰性轉子葉。陰性的轉子葉是加強及其變形從而降低。為了證明可能從轉子齒形優(yōu)化,改善已進行了三維流場計算在兩個不同的轉子型線在同一個壓縮機殼體,如圖4-2所示。生成兩個轉子的“N ”型和機架。例1是一個比較老的設計,形狀類似SRM “D”的轉子。它的特點意味著陰轉子上,有一個大的轉矩,密封線是比較長的相對較弱陰性葉。顯示在圖4-2的底部,例2的轉子的優(yōu)化操作在干燥的空氣。陰性的轉子是強大而陽性的轉子是較弱的。這結果在較高的輸送,一個相對較短的密封線和扭矩少陰轉子上。所有這些特點有助于提高螺桿壓縮機的性能。
這兩個分析結果中的橫截面定義的平面A-A、B-B速度分布的形式出現(xiàn),如圖4-1所示。
在本研究的情況下,轉子型線的變化對壓縮機的整體性能參數(shù)的影響可以相當準確地預測的一維模型,即使在這樣的分析模型作了詳細的假設是不正確的。因此,從三維分析得到的積分結果與一維模型的比較。
4.2.1用于干式螺桿壓縮機的網(wǎng)格生成。
在例1中,轉子被映射52個數(shù)值細胞沿葉片間的陽轉子和36個細胞沿著每個葉片間的陰轉子的圓周方向。這給出了分別在圓周方向上的208和216的數(shù)值的單元格的陽性和陰性的轉子??偣灿?個細胞在徑向方向上,并在軸向方向上的97個細胞被指定為兩個轉子。這種安排導致整個機器327090細胞的數(shù)值嚙合。例1轉子的截面如圖4-3所示。陰性轉子比較薄,在葉頂大半徑上。因此,它是更容易比分析映射在尖端半徑越小,如圖4-4所示。
圖4–2 轉子'N ' ,例1上,例2下
圖4-3 通過案例1轉子截面數(shù)值網(wǎng)格
在例2中的轉子被映射60細胞沿凸轉子突齒40細胞沿陰性葉瓣這給沿兩個轉子在圓周方向上的240個細胞。在徑向方向上,轉子被映射到與6個細胞,111細胞被選擇為沿轉子軸的映射。因此,該壓縮機的整個工作腔有406570個細胞。在這種情況下,不同的大小被應用,并且這些轉子的邊界適應不同標準的選擇。轉子的主要適應選擇的標準是與某個網(wǎng)格點分布,以獲得所需的質量比為0.3,沿轉子的邊界的局部曲率半徑。通過這種方式,更多的彎曲轉子映射只有一個輕微增加網(wǎng)格大小來獲得一個合理的價值網(wǎng)格的長寬比。為了獲得一個類似85個細胞所需要的網(wǎng)格長寬比,而不是沿著一個葉片間的60陰轉子的。這將給510細胞在圓周方向上每個轉子。如果細胞的數(shù)量在徑向方向也增加到8代替6但數(shù)量的細胞沿軸不變,則整個網(wǎng)格將包含更多,然后一百萬細胞,從而反過來導致計算時間大大延長,增加計算機內存要求。
通圖4 -4 過數(shù)值網(wǎng)格橫截面為例2轉子
4.2.2干式螺桿壓縮機的數(shù)學模型
所用的數(shù)學模型是基于在2章給出了動量,能量和質量守恒方程。這個方程計算空間的保護模型是為了獲得細胞面速度引起的嚙合運動。方程系統(tǒng)是封閉的斯托克城,傅立葉和菲克的法律和理想氣體狀態(tài)方程。這是定義控制方程解決方案所需的所有屬性。
4.2.3兩個不同的轉子的比較
獲得的結果對兩例1和例2壓縮機介紹如下。建立完整的范圍的工作條件和獲得增加壓力從1到3酒吧的壓縮機吸、排之間,15次步驟是必需的。一個進一步的25次步驟然后需要完成完整的壓縮機循環(huán)。每個時間步需要大約30分鐘,運行時間在一個800 MHz的AMD Athlon處理器。計算機內存要求約400 MB。
圖4-5的速度矢量在十字架和軸向部分進行比較。前圖給出案例1和轉子底部一個案例2。如可以看到的,在第2種情況的轉子實現(xiàn)更平滑的速度分布比第1種情況的轉子??梢栽黾訅嚎s機絕熱效率,減少流動阻力損失。在這兩種情況下,再循環(huán)在裹入工作腔發(fā)生的后果在空中拖曳力如圖。 另一方面,不同的流體流動模式可觀測到吸入口。工作腔和吸入閥和排出端口的速度范圍內保持相對低的,而流過的間隙間隙的變化迅速,方便達到聲速。
圖4-5 壓縮機截面的例1和案例2轉子速度場
圖4-6 壓縮機軸向部分案例1和案例2轉子速度場
這些區(qū)別根據(jù)垂直的壓縮機部分被證實 通過陰性電動子軸,顯示在圖4-6上。在例2中,低速度達到不僅在工作室還在入口及出口的港口。在吸入口,這是很重要的,因為液體再循環(huán),結束時出現(xiàn)端口。這個循環(huán)造成損失是無法恢復后的壓縮過程。因此,許多壓縮機的設計只有一個軸向港口而不是兩個港口,徑向和軸向港口。這種情況下減少吸入動態(tài)而造成損失的再循環(huán),但另一方面,增加的速度,吸入腔從而降低效率。這些問題中的某些問題,可避免僅由螺桿壓縮機的轉子的設計中具有較大的葉和更大的掃過容積的形狀,這使得更容易地完成吸入過程。然而,電動子根據(jù)現(xiàn)有的一維做法的外形設計忽略在口岸上的流程變化并且為此下等。在這種情況下,只有一個完整的三維方法如此,這將是有效的。
收藏