喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================
桂林電子科技大學(xué)信息科技學(xué)院畢業(yè)設(shè)計(論文)外文翻譯(譯文) 第 1 頁 共 14 頁
編號:
桂林電子科技大學(xué)信息科技學(xué)院
畢業(yè)設(shè)計(論文)外文翻譯
(譯文)
電火花線切割加工技術(shù)的發(fā)展水平
系 (部):
專 業(yè):
學(xué)生姓名:
學(xué) 號:
指導(dǎo)教師單位:
姓 名:
職 稱:
年 月 日
桂林電子科技大學(xué)信息科技學(xué)院畢業(yè)設(shè)計(論文)外文翻譯(譯文) 第 2 頁 共 14 頁
電火花線切割加工技術(shù)的發(fā)展水平
K.H.Ho, S.T.紐曼, S. Rahimifard ,R.D.倫
先進(jìn)制造系統(tǒng)和技術(shù)中心,機(jī)械和制造工程的沃爾夫森學(xué)院,
拉夫堡大學(xué),拉夫堡,萊斯特LE11 3TU ,英國
收到2003 年10 月13 日,接受2004 年4 月29 日
摘要:
電火花線切割加工是一種特殊的熱加工工藝,能夠精確加工各種具有復(fù)雜銳
邊形狀,一般連續(xù)工藝難以加工的零件。電火花線切割加工這門實(shí)用技術(shù)是在傳
統(tǒng)的電火花加工基礎(chǔ)上發(fā)展而被廣泛利用和接受的不直接接觸的材料去除技術(shù)。
自從這項工藝引進(jìn)以后,電火花線切割加工已經(jīng)由制作一些簡單的工具發(fā)展成為
生產(chǎn)高尺寸精度和表面完成質(zhì)量的微細(xì)零件的最好選擇。
這些年以來,在短期的機(jī)床生產(chǎn)發(fā)展循法和持續(xù)增長的成本壓力影響下,電
火花線切割加工機(jī)床為滿足機(jī)床需求已經(jīng)成為一個具有競爭性和經(jīng)濟(jì)型的機(jī)床
優(yōu)先選擇。然而,金屬絲的磨損的風(fēng)險已經(jīng)削弱了工藝的整個性能,從而大大降
低了電火花線切割加工技術(shù)的效率和精度。大量有意義的調(diào)查研究已經(jīng)發(fā)現(xiàn)不同
的實(shí)現(xiàn)基本電火花線切割技工目的的一套方法,通過分析排除金屬絲磨損優(yōu)化大
量工藝參數(shù)從而整體上提高工藝穩(wěn)定性。
這篇論文回顧了大量的調(diào)查研究工作,關(guān)于電火花加工工藝到電火花線切割
加工的發(fā)展概況。論文報道的電火花線切割加工研究涉及到工藝參數(shù)的最優(yōu)方
法,調(diào)查影響加工和生產(chǎn)過程的各種因素。論文也突出強(qiáng)調(diào)具有適應(yīng)能力的工藝
監(jiān)控和控制,通過調(diào)查獲得最優(yōu)加工條件的不同控制方法的可能性。
大范圍的電火花線切割加工工業(yè)應(yīng)用和混合加工工藝的發(fā)展同事被報道。論
文的最后一部分討論了這些發(fā)展以及概述了未來電火花線切割加工研究的可能
趨勢。
關(guān)鍵詞:電火花線切割加工;混合加工工藝;工藝優(yōu)化方法;切割效;材料
去除率;表面完成
桂林電子科技大學(xué)信息科技學(xué)院畢業(yè)設(shè)計(論文)外文翻譯(譯文) 第 14 頁 共 14 頁
1.引言
WEDM 是一種被廣泛接受的非傳統(tǒng)的用來加工復(fù)雜外形和輪廓零件的材料去
除工藝。它被視為傳統(tǒng)的用一個電極產(chǎn)生火花的電火花加工工藝的獨(dú)特的改進(jìn)。
然而,WEDM 利用的是能夠?qū)崿F(xiàn)在非常小的區(qū)域里循環(huán)往復(fù)移動的由直徑約為
0.05 到0.3 毫米的黃銅或鎢做成的金屬絲電極。利用一個手動的張力張緊調(diào)整
裝置時金屬絲一直保持張緊狀態(tài),以降低生產(chǎn)次品的趨勢。在電火花線切割加工
工藝過程中,毛坯在金屬絲前面被腐蝕,工作區(qū)域與金屬絲之間沒有直接接觸,
避免了加工過程中產(chǎn)生的機(jī)械應(yīng)力。除此之外,電火花線切割加工能夠制造高強(qiáng)
度高溫耐腐蝕的材料,還能避免熱處理鋼加工過程中產(chǎn)生的幾何形變。
WEDM 于20 世紀(jì)60 年代末被首度引入制造業(yè)。這一工藝的開發(fā)是尋求新技
術(shù)替代EDM 工藝中所用加工電極的結(jié)果。1974 年,D.H. Dulebohn 利用光線跟
蹤系統(tǒng)來自動控制將由WEDM 工藝加工的元件的形狀[1]。到了1975 年,這種工
藝得到快速普及,因?yàn)檫@種工藝及其卓越功能得到制造業(yè)界更好的理解承認(rèn)[2]。
在20 世紀(jì)70 年代末,WEDM 工藝引入了計算機(jī)數(shù)控系統(tǒng),使這種加工工藝發(fā)生
了巨大變革。因此,WEDM 加工工藝的多種潛能得到充分開發(fā),通過電極絲進(jìn)行
各種通孔加工--必須穿過要加工的部件。WEDM 的常見應(yīng)用包括制造沖壓和擠壓
的工具和鍛模、夾具和量器、原型、飛機(jī)和制藥部件,以及砂輪成形切刀。
本文是Ho 和Newman [3]所著關(guān)于開模放電機(jī)械論文的姊妹篇,它回顧了
包括WEDM 加工工藝在內(nèi)的各個學(xué)術(shù)研究領(lǐng)域。本文首先基于公認(rèn)熱導(dǎo)原理及其
應(yīng)用集粹回顧了這種加工工藝。本文的主要部分集中闡述WEDM 的主要研究活動,
這包括WEDM 加工工藝優(yōu)化以及WEDM 工藝監(jiān)控。本文的最后部分對這些話題進(jìn)行
了討論,并暗示W(wǎng)EDM 的未來研究方向。
2.電火花線切割加工
這一部分介紹了WEDM 的基本原理以及此工藝結(jié)合其他材料去除技術(shù)的變
化。
2.1 WEDM 工藝
WEDM 材料去除技術(shù)與傳統(tǒng)的通過電火花腐蝕EDM 技術(shù)非常的相似。在WDEM
過程中,工作區(qū)域與金屬絲被連續(xù)沖洗到加工區(qū)域的絕緣液隔開,它們之間產(chǎn)生
的電火花慢慢腐蝕材料[4]。然而,今天的WEDM 工藝通常在充滿絕緣液的箱體工
作區(qū)中加工。這樣一個在絕緣液下加工的方法有利于維持溫度恒定和高效率的加
工。WEDM 工藝充分利用了負(fù)極與正極之間的離子通道里產(chǎn)生的電能,然后把它
轉(zhuǎn)化成熱能溫度達(dá)到8000℃到12000℃或高達(dá)20000℃來預(yù)熱和融化每個電極表
面的材料。當(dāng)脈動直流電源提供的20000和30000赫茲[9]之間發(fā)生斷開時,等離
子體通道就會發(fā)生故障。這會導(dǎo)致一個突然的溫度下降使循環(huán)介電液通過等離子
體通道沖洗從磁極表面的熔融顆粒。
雖然EDM 和WEDM 材料去除技術(shù)是相似的,但他們的功能特性是不完全相同
的。WEDM 連續(xù)使用很薄的金屬絲通過工件由微處理器進(jìn)給,這使復(fù)雜形狀的零
件能夠被加工,具有很高的精度度。加工的零件錐度范圍從100mm 厚的15度到
400mm 厚的30度。微處理器也始終保持著絲和工件之間的間隙,而變化范圍從
0.025毫米至0.05毫米。WEDM 消除需要進(jìn)行復(fù)雜的預(yù)成形電極,這通常需要在
EDM 執(zhí)行粗加工和精加工操作。在WEDM 的情況下,金屬絲必須做出幾個加工
通道沿著輪廓進(jìn)行加工才能達(dá)到所需尺寸精度和表面光潔度的質(zhì)量。Kunieda and
Furudate[10]測試?yán)酶蒞EDM 提高精加工的精度的可行性操作,這是一個氣體中
進(jìn)行不使用電介質(zhì)流體的試驗(yàn)。典型WEDM 切削率(CRS )對于厚50mm D2工具鋼
是300 mm2/min,對于150毫米厚的鋁[ 11 ]是750 mm2/min 且表面完成質(zhì)量為0.04
?0.25 LRA 。此外,WEDM 使用去離子水代替烴油作為絕緣液體并將其包含它的
火花區(qū)域內(nèi)。去離子水不適合于傳統(tǒng)的EDM,因?yàn)樗鼤?dǎo)致快速的電極磨損,但
其低的粘度和快速冷卻速度使其非常適用于WEDM[ 12 ]。
2.2 混合加工工藝
也有一些混合加工工藝(HMPs)尋找線切割機(jī)床與其他機(jī)械加工技術(shù)的綜合
優(yōu)勢。這樣的一個組合是電線放電磨削( WEDG )這是常見的用于電子電路的細(xì)
棒微機(jī)械加工。WEDG 采用單絲導(dǎo)向以限制金屬絲張力于導(dǎo)線的邊緣和
桿之間的放電區(qū)域內(nèi),為了盡量減少導(dǎo)線振動。因此,能夠研磨出5 lmin 內(nèi)直
徑[ 13 ]具有精度高,良好的重復(fù)性和良好的直線性[14]的鋼筋。WEDG 其他的
優(yōu)點(diǎn)包括能加工具有大的縱橫比,并保持同心的鋼筋,具有很廣泛的形狀復(fù)雜性,
如各個部分的錐形和梯形形狀。一些科學(xué)家[ 16?19]已經(jīng)在細(xì)電極或引腳具有
大縱橫比的微機(jī)械加工中使用WEDG 工藝,這是很難通過傳統(tǒng)的精密加工微機(jī)械
加工方法如微電火花,LIGA 和準(zhǔn)分子激光鉆孔。
有些HMPs 旨在改善WEDM 如表面完整性和CR。例如超聲波振動應(yīng)用到線電
極以提高表面完成質(zhì)量與CR 在一起,以減小殘余應(yīng)力在加工表面[20] 。在另一
方面,WECG 工藝替代用于WEDG 使用電化學(xué)的放電解決方案,生產(chǎn)出高品質(zhì)的表
面完成的廣泛的加工條件[ 15 ] 。Masuzawa 等[13,15 ]將WECG 與適合于精加
工WEDG 的表面完成質(zhì)量進(jìn)行了比較。旋轉(zhuǎn)軸被應(yīng)用到線切割機(jī)床到實(shí)現(xiàn)更高的
材料去除率( MRR ),并使自由幾何形狀的生成[21,22] 。各種工藝參數(shù)的影響
如部分旋轉(zhuǎn)速度,焊絲輸送速度和脈沖導(dǎo)通時間的表面完整性和圓度所產(chǎn)生的部
分在可行性研究中已經(jīng)在被調(diào)查[23] 。
3. 線切割機(jī)床的應(yīng)用
本節(jié)討論了WEDM 的可行性過程中在所用的各種材料的加工特別是在模具的
應(yīng)用。
3.1 現(xiàn)代模具的應(yīng)用
WEDM 在現(xiàn)代所用的各種材料的加工工裝的應(yīng)用已獲得廣泛接受。一些科學(xué)
家[24,25 ]研究電火花線切割加工中的加工性能在硅和壓實(shí)模具加工的由燒結(jié)
碳化物組成的硅片。使_______用圓柱形的可行性線切割機(jī)床修整一個旋轉(zhuǎn)的金屬結(jié)合劑金剛石
用于精密形式砂輪陶瓷也進(jìn)行了研究[22]。結(jié)果顯示,該電火花線切割加工過程中能夠產(chǎn)生
精確的和小圓角半徑錯綜復(fù)雜的輪廓,但一在高磨損率是觀察到的金剛石砂輪第一磨通。這
種初始的高輪磨損率是由于過度突出鉆石粒,其不經(jīng)過強(qiáng)力粘結(jié)到輪線切割加工過程
[ 26 ] 。永久的線切割機(jī)床釹鐵硼和'軟'錳鋅鐵氧體磁性材料小型系統(tǒng)中,這就需要小的磁
性使用部分,研究了它與比較光切割過程[ 27 ] 。人們發(fā)現(xiàn),在電火花線切割加工過
程產(chǎn)生更好的尺寸精度和表面完成質(zhì)量,但有一個緩慢的CR ,5.5毫米/分鐘的
釹鐵硼和0.17毫米/分鐘的錳鋅鐵氧體。研究還做調(diào)查的機(jī)加工性能用于加工具
有高縱橫比的微WEDM 采用各種金屬,包括中尺度部分不銹鋼,奧氏體不銹鋼,
鈹銅和鈦[28]。
3.2 先進(jìn)陶瓷材料
在WEDM 過程中也演變?yōu)橐粋€為的加工最有前途的替代品先進(jìn)陶瓷。Sanchez 等
人。[29]提供了一種文獻(xiàn)調(diào)查的先進(jìn)陶瓷的電火花,已通過鉆石被普遍加工
磨削和研磨。在同一份文件,他們研究加工碳化硼( B4C )的可行性和采用電
火花加工硅滲透碳化硅( SiSiC )和線切割機(jī)床。Cheng 等人。[30]還評價
的可能性采用電火花加工基礎(chǔ)硼化鋯材料和線切割機(jī)床,而松尾和大島[31]研究
的導(dǎo)電性的碳化物含量的影響,即NBC 和TiC 等,上
氧化鋯陶瓷的CR 和表面粗糙度(氧化鋯)線切割機(jī)床中。樂和Lee [ 32 ]已經(jīng)
成功WEDMed 塞隆501和鋁氧化物。不過,他們意識到該MRR 是非常低的相比,
所述切割金屬,如合金鋼SKD- 11與表面的粗糙度一般不如用得到的1電火花加
工過程。[33]解釋說,材料去除率和表面粗糙度不僅依賴對加工參數(shù),而且材
料部分。
克服了技術(shù)的創(chuàng)新方法電火花線切割機(jī)床和工藝的限制要求該材料的電阻率
與約100 X /厘米[ 34 ]或閾值300 X /厘米[ 35 ]最近已經(jīng)探索。有不同檔次的
工程陶瓷,其中柯尼希等。[ 34 ]列為非導(dǎo)體,天然導(dǎo)體和指揮,這是摻雜非
導(dǎo)體的結(jié)果與導(dǎo)電元件。[ 36 ]帶來了新的視角對傳統(tǒng)電火花加工通過使用一
個輔助電極,以促進(jìn)現(xiàn)高電致電阻陶瓷的火花。無論是電火花線切割機(jī)床和工藝
已成功測試擴(kuò)散導(dǎo)電粒子輔助電極上賽隆陶瓷的表面通過絕緣協(xié)助供給電極材
料。同樣的技術(shù)也已試驗(yàn)在其他類型的絕緣陶瓷材料的包括氧化物陶瓷,例如氧
化鋯和氧化鋁,這已經(jīng)很有限的導(dǎo)電性能[37] 。
3.3 現(xiàn)代復(fù)合材料
在幾乎所有的不同材料去除工藝當(dāng)中,WEDM 被認(rèn)為是現(xiàn)代復(fù)合材料加工中
既高效又經(jīng)濟(jì)的工藝手段。幾個比較性研究[38,39]已應(yīng)用于電火花線切割和激光切割的
加工金屬基復(fù)合材料(MMC),碳纖維和增強(qiáng)液晶聚合物復(fù)合材料。這些研究表明,WEDM
產(chǎn)生更好的切削刃質(zhì),并具有更好的控制過程參數(shù),產(chǎn)生較少的工件表面損傷。
但是,它對于所有被測試的復(fù)合材料具有較慢MRR。Gadalla 和Tsai [ 40 ]比
較了線切割機(jī)床與常規(guī)金剛石鋸,發(fā)現(xiàn)它產(chǎn)生的粗糙度和硬度具有低速金剛石鋸
但具有更高M(jìn)RR。Yan 等人[41]調(diào)查了在MMC 上進(jìn)行各種加工工藝,利用旋轉(zhuǎn)電
火花加上一個圓盤狀的電極Al2O3/6061Al 復(fù)合材料進(jìn)行試驗(yàn)加工。其他研究
[42,43]上的線切割機(jī)床已進(jìn)行調(diào)查的Al2O3顆粒增強(qiáng)復(fù)合材料在電火花線切割
加工性能的工藝參數(shù)的影響。人們發(fā)現(xiàn),工藝參數(shù)對表面粗糙度的影響較小但對
CR 產(chǎn)生不利影響。
4 電火花線切割加工研究的主要領(lǐng)域
作者們組織了各種線切割機(jī)床研究分為兩個主要領(lǐng)域,即電火花線切割加工
工藝優(yōu)化與電火花線切割加工過程監(jiān)控和控制。
4.1 電火花線切割加工工藝優(yōu)化
今天,最有效的加工策略是通過識別影響的各種因素決定的在線切割加工過
程中,追求的不同方式獲得最佳的加工條件和性能。本節(jié)提供了一個研究的眾多
涉及的設(shè)計加工策略工藝參數(shù)和過程的建模。
4.1.1 工藝參數(shù)設(shè)計
對各種工藝參數(shù)的設(shè)置在電火花線切割加工過程中起到了至關(guān)重要的作用
需要產(chǎn)生一個最佳的機(jī)械加工性能。這部分顯示了一些分析和統(tǒng)計的用于研究的
參數(shù)的作用的方法措施,典型的線切割機(jī)床的性能如CR,MRR 和SF 。
4.1.1.1 影響測量性能的因素
WEDM 是通過控制一個復(fù)雜的加工工藝大量的工藝參數(shù),如脈沖持續(xù)時間,
放電頻率和放電電流強(qiáng)度。在這個過程中參數(shù)的任何細(xì)微變化可以影響措施的機(jī)
加工性能如表面粗糙度和CR ,這是兩種在線切割加工操作的最顯著的方面
[44] 。鈴木汽車和岸[ 45 ]研究了放電的減少能得到更好的表面粗糙度,而羅[46]
發(fā)現(xiàn)了一個高能的額外要求效率保持較高的加工速度而不損壞導(dǎo)線。一些作者
[47]有還研究了絲刀具性能的演變影響加工精度,成本和性能措施。
適當(dāng)?shù)募庸l件的選擇對線切割加工過程是基于相關(guān)分析各種工藝參數(shù),以不同的表現(xiàn)
措施,即CR , MRR 和SF 。傳統(tǒng)上,這是開展嚴(yán)重依賴操作者的經(jīng)驗(yàn)或保守技術(shù)由電火
花線切割設(shè)備制造商提供的數(shù)據(jù),這產(chǎn)生不一致的機(jī)械加工性能。Levy 和馬吉[48]表明,
由制造商給定的參數(shù)設(shè)定只適用于普通鋼種。設(shè)置用于加工的新材料,如先進(jìn)陶瓷和MMC
卡,必須進(jìn)一步優(yōu)化實(shí)驗(yàn)。
4.1.1.2 在切割工藝參數(shù)的影響率
許多不同類型的解決問題的質(zhì)量工具已經(jīng)被用于研究的顯著因素及其與其
它變量的相互關(guān)系在獲得最佳的電火花線切割加工的CR 。今田等人[ 49 ]分類
影響的各種潛在因素措施為五大類線切割機(jī)床的性能工件即不同性質(zhì)的材料和
介電液,機(jī)械特性,可調(diào)加工參數(shù)和組件幾何。此外,它們應(yīng)用的設(shè)計試驗(yàn)設(shè)計
(DOE )技術(shù),研究和優(yōu)化變量在流程設(shè)計可能產(chǎn)生的影響和發(fā)展,并驗(yàn)證實(shí)驗(yàn)
結(jié)果用噪音對信號(S / N)比分析。Tarng 等。[ 50]采用神經(jīng)網(wǎng)絡(luò)系統(tǒng)與
應(yīng)用模擬退火算法求解多響應(yīng)優(yōu)化問題。它結(jié)果發(fā)現(xiàn),加工參數(shù),如脈沖開/關(guān)
時間,峰值電流,開路電壓,伺服基準(zhǔn)電壓,電容和工作臺速度是估算的關(guān)鍵參
數(shù)CR 和SF。Huang 等人[ 51 ]認(rèn)為那幾個發(fā)表作品[ 50,52,53 ]關(guān)注大多與這
些參數(shù)的優(yōu)化粗加工切割作業(yè),并提出了實(shí)用的過程從粗加工計劃精加工策略
操作。實(shí)驗(yàn)結(jié)果表明,該脈沖導(dǎo)通時間和導(dǎo)線外圍之間的距離和工件表面影響
CR 和SF 顯著。放電能量對的影響CR 和一個MMC 的SF 也進(jìn)行了研究[54] 。
4.1.1.3 效果上的材料去除速率的加工參數(shù)。
加工的影響在體積MRR 參數(shù)也已認(rèn)為是加工性能的量度。Scott 等人[ 52 ]
采用析因設(shè)計需要數(shù)的實(shí)驗(yàn)來確定最有利組合線切割機(jī)床參數(shù)。他們發(fā)現(xiàn),該放
電電流,脈沖持續(xù)時間和脈沖頻率是影響顯著控制因素MRR 和SF ,而線速度,
線張力和介質(zhì)流速有最小的影響。Liao 等人[ 53 ]建議確定的參數(shù)的方法基于
田口品質(zhì)設(shè)計方法設(shè)置和方差分析。結(jié)果表明材料去除率和SF 很容易被工作臺
進(jìn)給的影響率的脈沖的導(dǎo)通時間,從而也可用于控制放電頻率為預(yù)防斷線。黃廖
本[ 55 ]提出利用灰色關(guān)聯(lián)度和S / N 比分析,這也顯示了類似的結(jié)果證明的影
響工作臺的進(jìn)給脈沖導(dǎo)通時間對材料去除率。實(shí)驗(yàn)研究確定不同的材料去除率和
SF 加工參數(shù)也已進(jìn)行[ 56 ] 。該結(jié)果已被用于與熱模型分析了斷線的現(xiàn)象。
4.1.1.4 對表面光潔度的工藝參數(shù)的影響
也有一些已經(jīng)發(fā)表的作品僅研究對加工參數(shù)的影響該WEDMed 表面。Go¨
kler 和Ozano ¨ ¨ ZGU [ 57 ]研究了最合適的切割選擇和偏移參數(shù)組合,以
獲得所期望的表面粗糙度對于恒定線速度和介質(zhì)沖洗壓力。Tosun 的等人
[ 58 ]研究的效果脈沖持續(xù)時間,開路電壓,線速度和在WEDMed 工件介質(zhì)沖洗
壓力表面粗糙度。人們發(fā)現(xiàn),在增加脈沖持續(xù)時間,開路電壓和送絲速度用表面
粗糙度增大,而越來越多介質(zhì)流體壓力減小表面粗糙度。阿南德[ 59 ]用部分因
子試驗(yàn)正交陣列布局,以獲得最可取的工藝規(guī)范對于提高在電火花線切割加工的
尺寸精度和表面粗糙度。斯佩丁和Wang [ 60 ]優(yōu)化的過程利用人工神經(jīng)網(wǎng)絡(luò)參
數(shù)設(shè)置建模的WEDMed 工件表面特征,而威廉姆斯和Rajurkar [ 61 ]提出當(dāng)前
調(diào)查的特性的結(jié)果產(chǎn)生的電火花線切割加工表面。
4.1.2 流程建模
另外,電火花線切割加工的由建模數(shù)學(xué)技術(shù)手段也已經(jīng)適用于有效地與眾多
工藝變量的過程的不同表現(xiàn)。斯佩丁和Wang [ 62 ]開發(fā)的建模技術(shù)采用響應(yīng)曲
面法和人工神經(jīng)網(wǎng)絡(luò)技術(shù)來預(yù)測過程性能如CR , SF 和表面波紋度在一個合理
的大范圍的輸入因子水平。劉和Esterling [ 63 ]提出了一種實(shí)體建模方法,
它可以精確表示幾何切割由電火花線切割加工過程,而Hsue 等[ 64 ]開發(fā)了一
個模型來估計MRR 在幾何通過考慮與偏轉(zhuǎn)線切割導(dǎo)線中心的轉(zhuǎn)化指數(shù)軌跡。Spur
和Scho¨nbeck [65]設(shè)計了一個理論模型研究工件材料的影響,并在工件的電火花線切割
加工的脈沖型屬性與陽極極性。Han 等人。[ 66 ]開發(fā)一個仿真系統(tǒng),該系統(tǒng)可精確地再
現(xiàn)電火花線切割放電現(xiàn)象。該系統(tǒng)還應(yīng)用自適應(yīng)控制,它自動生成最佳加工條件進(jìn)行高精度
WEDM。
4.2 電火花線切割加工過程監(jiān)測和控制
自適應(yīng)控制系統(tǒng)的應(yīng)用在線切割加工是用于監(jiān)測和控制至關(guān)重要的過程。本節(jié)將
探討先進(jìn)監(jiān)測和控制系統(tǒng),包括模糊,斷線和自調(diào)諧的自適應(yīng)控制在電火花線切
割加工過程中使用的系統(tǒng)。
4.2.1 模糊控制系統(tǒng)
比例控制器歷來在伺服進(jìn)給控制系統(tǒng)用于監(jiān)視和在電火花線切割加工過程評
估差距的條件。然而,控制器的性能是有限的由加工條件,這大大與參數(shù)設(shè)定而
有所不同。Kinoshita 等人[ 67 ]調(diào)查的焊絲輸送速度,焊絲卷繞的影響速,絲
的張力和對電參數(shù)電火花線切割加工過程中間隙條件。其結(jié)果是,許多常規(guī)基于
顯式的數(shù)學(xué)控制算法和統(tǒng)計模型已經(jīng)被開發(fā)用于電火花線切割加工或操作
[ 68-72 ] 。幾位作者[ 73,74 ]還開發(fā)了脈沖判別系統(tǒng)提供分析和監(jiān)測的手段
各種線切割機(jī)床條件下的脈沖序列定量。雖然這些類型的控制系統(tǒng)可以適用于很
寬范圍的加工條件下,它不能向間隙狀態(tài)響應(yīng)當(dāng)有一個意想不到的干擾[ 75 ] 。
在最近幾年中,模糊控制系統(tǒng)已應(yīng)用于電火花線切割加工工藝,以達(dá)到最佳和
高效加工。一些研究者聲稱,模糊邏輯控制系統(tǒng),實(shí)現(xiàn)了控制戰(zhàn)略,抓住了專家
的知識或操作者在保持所需的經(jīng)驗(yàn)加工操作[76] 。此外,模糊邏輯控制器不需
要任何數(shù)學(xué)綜合模型適應(yīng)的動態(tài)行為在線切割加工操作[ 77 ] 。一些作者
[ 75,78 ]提出火花頻率控制與自適應(yīng)基于模糊邏輯控制和控制系統(tǒng)的調(diào)整策略,
這可以應(yīng)用到很寬一系列的加工條件。廖和胡[ 79 ]也設(shè)計了在線監(jiān)測脈沖模糊
控制器系統(tǒng)隔離放電噪聲和歧視每個脈沖的點(diǎn)火延遲時間。電火花脈沖可以分為
開放,火花,電弧,關(guān)閉或總之,這是依賴于點(diǎn)火延遲時間,并且對材料去除率,
磨損和零件精度[ 80,81 ]有直接影響。
4.2.2 線誤差自適應(yīng)控制系統(tǒng)
電火花線切割加工過程中發(fā)生的最不理想的加工特征之一大大影響加工精
度和性能連同該部分的質(zhì)量制造。許多嘗試取得了開發(fā)的自適應(yīng)控系統(tǒng)提供在線
辨識的任何不正常的加工條件和控制策略防止導(dǎo)線的斷裂不影響各種措施的線
切割機(jī)床的性能。這公布的部分報告研究弗羅馬集合涉及斷線的自適應(yīng)控制工作
滯后和振動線。
4.2.2.1 金屬絲破損
各種各樣的控制策略防止導(dǎo)線的斷裂是建立上的導(dǎo)線斷裂的特性的知識。
Kinoshita 等人[82]觀察到的快速上漲間隙電壓,繼續(xù)為脈沖頻率前約5-40毫秒
斷線。他們開發(fā)一個監(jiān)測和控制系統(tǒng),它關(guān)掉脈沖發(fā)生器和伺服系統(tǒng)防止導(dǎo)線
從斷裂,但它影響加工效率。一些作者[ 83,84 ]也有人認(rèn)為濃度放電在某一點(diǎn)
的線,這將導(dǎo)致增加的局部溫度從而在金屬絲的斷裂。然而,自適應(yīng)控制系統(tǒng)集
中在檢測火花的位置和排出的還原未做任何考慮,開發(fā)能源到MRR。導(dǎo)線的斷裂
有也被認(rèn)為與上升的短路數(shù)脈沖持續(xù)時間超過30毫秒,直到金屬絲破損[85] 。
其他作者[86]認(rèn)為,斷線是相關(guān),在火花頻率突然增加。有人還發(fā)現(xiàn),他們的建
議的監(jiān)察和控制系統(tǒng)的基礎(chǔ)上的在線分析火花次數(shù)的實(shí)時調(diào)節(jié)脈沖關(guān)斷時間會
影響材料去除率。Liao 等人[87]補(bǔ)救通過與材料去除率的加工問題參數(shù)和使
用新的電腦輔助脈沖基于脈沖串的分析判別系統(tǒng)提高了加工速度。而燕和廖
[ 88,89 ]應(yīng)用了自學(xué)習(xí)模糊控制策略不僅要控制的火花頻率,但也保持較高的
MRR 通過實(shí)時調(diào)整停機(jī)時間脈沖下的恒定進(jìn)給率加工條件。
導(dǎo)線的破損也是由于過度的熱負(fù)荷對電線產(chǎn)生不必要的熱量電極。大多數(shù)過
程中產(chǎn)生的熱能在電火花線切割加工過程被轉(zhuǎn)移到金屬絲而其余散失到?jīng)_洗流
體或輻射[86] 。但是,當(dāng)瞬時能量比率超過某一限制根據(jù)熱性能線材,電線會
斷裂。幾位作者[ 90-92 ]研究了不同的影響在電線上的熱載的加工參數(shù)并制定
了熱模型模擬線切割機(jī)床過程。除了產(chǎn)生火花的特征或溫度分布,其機(jī)械強(qiáng)度導(dǎo)
線也有對發(fā)生一個顯著作用的斷線。羅[93]聲稱,絲材料屈服和斷裂向斷線,而
溫度的升高加劇失敗的過程。
4.2.2.2 金屬絲滯后和振動線
造成的幾何誤差主要因素WEDMed 部分都作用于各種工藝勢力電線導(dǎo)致它離
開了編程的路徑。這些力量包括所產(chǎn)生的機(jī)械壓力其外由所形成的氣泡侵蝕機(jī)制
等離子,軸向力應(yīng)用拉直的鋼絲,液壓力量引起的沖洗,作用在導(dǎo)線上的靜電力
和固有的火花電動態(tài)力代[ 94,95 ] 。其結(jié)果是,靜撓度在呈圓滯后導(dǎo)線的作用
是至關(guān)重要的研究,以便產(chǎn)生精確的切削刀具路徑。幾位作者[ 93,96,97 ]進(jìn)行
的幾何參數(shù)研究的部分的不精確性所造成的導(dǎo)線的滯后并試圖以數(shù)學(xué)建模電火
花線切割加工工藝。而貝爾特拉米和Dauw [ 98 ]監(jiān)測和一個通過一個在線控制
線位置用的控制算法使實(shí)質(zhì)上的光學(xué)傳感器任何輪廓在相對高的切割要切割速
度。許多幾何工具的運(yùn)動補(bǔ)償方法,這增加了加工間隙和防止計量或電線破損切
削區(qū)時,具有高曲率,如小半徑彎道也已經(jīng)開發(fā)[ 99100 ] 。Lin 等人[ 101 ]
開發(fā)了基于模糊邏輯控制策略提高加工精度和濃縮在拐角部位引發(fā)不影響切割
進(jìn)給率。
此外,電線的過程中的動態(tài)行為線切割機(jī)床也被限制以避免切割不準(zhǔn)確。上
有設(shè)計一些討論和監(jiān)測和控制系統(tǒng)的開發(fā)補(bǔ)償導(dǎo)線振動的行為[ 86,102 ] 。
Dauw 等[103]另據(jù)報道,導(dǎo)線的振動可以顯著減少時在導(dǎo)線和導(dǎo)線導(dǎo)板完全浸沒
在填充有離子交換水,工作油箱。幾個文獻(xiàn)[ 104 ]給出了一個數(shù)學(xué)模型分析導(dǎo)
線振動的瞬態(tài)響應(yīng)的基礎(chǔ)上在單次放電作用于工具電線力過程。一些作者
[ 105,106 ]的審閱的各種先進(jìn)的研究和開發(fā)在電火花加工中使用的監(jiān)測和控制
系統(tǒng)和電火花線切割加工工藝。
4.2.3 自整定自適應(yīng)控制系統(tǒng)
在最近幾年中,電火花線切割加工的研究和開發(fā)有研究控制策略調(diào)整到變化
在加工一個所需的功率密度工件具有不同的厚度。幾位作者[ 82,85 ]發(fā)現(xiàn),在
工件厚度的變化機(jī)械加工導(dǎo)致的增加的線中熱密度和導(dǎo)線的最終斷裂。Rajurkar
等人[ 107,108 ]提出了一種自適應(yīng)控制系統(tǒng)具有多個輸入模型,用于監(jiān)視和控
制根據(jù)網(wǎng)上的火花頻率確定工件高度。其他作者[ 72 ]開發(fā)了包括一個明確的數(shù)
學(xué)系統(tǒng)模型需要大量的實(shí)驗(yàn)和統(tǒng)計技術(shù)。Yan 等人[109]所使用的神經(jīng)網(wǎng)絡(luò)來估
計所述工件的高度和模糊控制邏輯來抑制斷線時工件具有可變高度加工。
以知識為基礎(chǔ)的控制系統(tǒng)中的應(yīng)用控制線切割機(jī)床的不利條件也得到了
試驗(yàn)。Snoeys 等人[ 110 ]提出了一種知識基礎(chǔ)的系統(tǒng),它包括三個單元,即
工作的準(zhǔn)備,過程控制和操作員協(xié)助或故障診斷,使監(jiān)控和電火花線切割加工過
程的控制。勞動預(yù)備制模塊確定最佳的加工參數(shù)設(shè)置,同時操作者的援助和
故障診斷數(shù)據(jù)庫告知經(jīng)營者和診斷的加工誤差。因此,該功能這些模塊增加自主
權(quán)給予的金額到線切割機(jī)床。黃廖本[ 111 ]有也表明了運(yùn)營商援助的重要性,
并為電火花線切割加工過程中的故障診斷系統(tǒng)。他們提出了一個原型人工神經(jīng)為
維護(hù)網(wǎng)絡(luò)的專家系統(tǒng)時間表及線切割機(jī)床的故障診斷。德凱塞等人[112]開發(fā)集
成了一個熱模用于預(yù)測和控制專家系統(tǒng)熱過載經(jīng)歷了上線。雖然該模型提高了機(jī)
器的自治水平,需要大量的計算量,這會降低處理速度和在線破壞控制性能。
5 討論與未來的研究方向
作者們歸類廣泛的發(fā)表關(guān)于在線切割加工過程分為三個作品,主要范疇即優(yōu)
化過程變量,監(jiān)測和控制的過程中,電火花線切割機(jī)床的發(fā)展。本節(jié)討論分類線
切割機(jī)床研究領(lǐng)域和未來可能的研究方向,如圖1所示。
5.1 優(yōu)化過程變量
在線切割加工過程的優(yōu)化往往被證明是由于許多調(diào)節(jié)一個困難的任務(wù)加工
變量。一個單一的參數(shù)變化會影響以復(fù)雜的方式[52]的處理。因此,影響該過程
的各種因素必須是理解,以確定該過程的趨勢變化,如4.1.1節(jié)中討論。選擇的
工藝參數(shù)的最佳組合實(shí)現(xiàn)了最佳的加工性能涉及的分析和統(tǒng)計方法。然而,這是
非常復(fù)雜的涉及到與輸入工藝參數(shù)測量輸出性能,并得出最優(yōu)導(dǎo)致使用模擬退火
算法。華潤, MRR 和SF 通常選擇作為該過程的措施性能。然而,這些方法提供
了一個識別影響該變量的有效手段機(jī)械加工性能。
此外,該方法的建模也是解決有關(guān)的繁瑣問題的有效途徑工藝參數(shù)對措施的
表現(xiàn)。正如4.1.2節(jié),多次嘗試都已經(jīng)進(jìn)行了建模過程中調(diào)查到電火花線切割加
工參數(shù)的影響性能,并確定最佳的加工條件從組合的無窮數(shù)。如因此,它提供了
一個準(zhǔn)確的尺寸檢驗(yàn)和驗(yàn)證的過程中產(chǎn)生了更好的穩(wěn)定性并為電火花線切割加
工工藝更高的生產(chǎn)力。然而,侵蝕的復(fù)雜性和隨機(jī)性過程電火花線切割加工中需
要確定的應(yīng)用以及隨機(jī)方法[61] 。因此,在線切割加工工藝的優(yōu)化仍將是重點(diǎn)
研究領(lǐng)域相匹配的眾多工藝參數(shù)與措施的表現(xiàn)。
5.2 監(jiān)測和控制的過程
多年來,監(jiān)測和控制系統(tǒng)已在最大限度地減少了重要貢獻(xiàn)在電火花線切割加
工性能的干擾的效果。多參數(shù)加工設(shè)置進(jìn)行了很難清楚地了解,并獲得最佳的加
工條件。它需要一個控制算法這往往是基于明確的數(shù)學(xué)和統(tǒng)計模式,以配合加工
過程。然而,模糊控制邏輯的應(yīng)用程序有帶來了很大的變化,以常規(guī)監(jiān)測和控制
的電火花線切割加工工藝的方法。模糊控制邏輯可以考慮幾個加工變量,權(quán)衡顯
著因素影響過程,并進(jìn)行更改加工不應(yīng)用詳細(xì)的數(shù)學(xué)條件模型,正如上文第4.2.1
節(jié)。另外,應(yīng)用所述專家系統(tǒng)能的可行性提供意見和解決問題也一直研究[110] 。
這種制度將極大地吸引車間運(yùn)作的需要,要求無人值守線切割機(jī)床的操作。
斷線和的彎曲的風(fēng)險電線也限制了效率和準(zhǔn)確性電火花線切割加工工藝。斷
線的發(fā)生直接降低已經(jīng)很低的加工速度影響在加工過程的總效率。雖然,在控制
策略中報告第4.2.2旨在解決斷線的問題,它完全依賴于可能的指示發(fā)生和產(chǎn)生
結(jié)果調(diào)查不充分的斷線現(xiàn)象的根本原因。這些策略可能因而被視為是一種挫折當(dāng)
用可變加工工件要求在加工一個急劇變化的高度條件。
此外,電線的振動行為和靜態(tài)偏轉(zhuǎn)容易影響的幾何精度部分生產(chǎn)。典型的解
決這些問題的經(jīng)常是非常保守的性質(zhì)通過增加加工間隙或減小放電能量,這被認(rèn)
為是一個主要的缺點(diǎn)為電火花線切割處理效率。圖。圖2顯示了大量的研究工作
集中在改善通過應(yīng)用程序所引起的電線的誤差的自適應(yīng)控制系統(tǒng)。Jennes 和
Snoey[113]認(rèn)為,傳統(tǒng)的研究目的是不提高加工效率,而且,以防止從加工過程
中金屬絲斷裂。因此,一種可能的新的挑戰(zhàn),線切割機(jī)床和未來工作區(qū)將爭取實(shí)
現(xiàn)更高的被操縱通過收購華潤較高的加工效率和MRR 具有低線量和頻率。
5.3 線切割機(jī)床的發(fā)展
在線切割加工過程是一個合適的加工選項在滿足當(dāng)今的現(xiàn)代應(yīng)用的需求。它
已被廣泛應(yīng)用于汽車,航空航天,模具,工具和模具制造等行業(yè)。電火花線切割
加工的應(yīng)用程序,也可以在醫(yī)療發(fā)現(xiàn),光,牙科,珠寶等行業(yè),以及在汽車和航
空航天研發(fā)領(lǐng)域[ 114 ] 。它的大池的應(yīng)用中,如圖所示。2 ,主要是欠加工
技術(shù),這是沒有限制的硬度,強(qiáng)度或工件的韌性材料。如上文第3節(jié)的在線切割
加工HSTR ,現(xiàn)代的復(fù)合材料和先進(jìn)陶瓷材料,這正顯示出越來越多的趨向于許
多工程應(yīng)用程序,也已嘗試。它有更換加工陶瓷的常規(guī)手段,即超聲波加工和激
光束加工,這不僅是昂貴的機(jī)器,但損壞的陶瓷構(gòu)件的表面完整性。然而,由于
引入的超過20個非傳統(tǒng)在過去50年的加工工藝和在堅硬,堅韌的發(fā)展快速增長做
強(qiáng)工件材料[115] ,在線切割加工過程中不可避免地要在不斷煥發(fā)青春為了競爭
和滿足未來的關(guān)鍵加工要求。
此外,在線切割加工過程中一直尋求的好處與其他材料的去除方法相結(jié)合的
進(jìn)一步擴(kuò)大其應(yīng)用,提高了加工特性。作者們歸類在線切割加工機(jī)到不同的物理
特性,它明確區(qū)分了不同的機(jī)器特點(diǎn)類型影響性能措施,機(jī)械加工能力和配套設(shè)
施,如圖所示3 。其中,最實(shí)用和精度HMP 安排使用的WEDG 過程主要以生產(chǎn)小
尺寸和復(fù)雜形狀細(xì)桿,它可以很容易地彎曲或折斷由橫向使用傳統(tǒng)的磨削工藝
時,可強(qiáng)制。數(shù)控系統(tǒng)的精度也有份為WEDG [116]的準(zhǔn)確性。因此,該HMP 過
程,特別是WEDG 過程中,將繼續(xù)得到深入研究的關(guān)注特別是在微電子電路的增
長制造業(yè)領(lǐng)域。
還有一個重要的推動朝無人值守線切割機(jī)床的操作實(shí)現(xiàn)一機(jī)加工性能可以
由熟練的操作員才能實(shí)現(xiàn)的水平。這樣的目標(biāo)已經(jīng)通過應(yīng)用程序部分地滿足,的
CNC 控制的加工策略以防止斷線和自動化系統(tǒng)。環(huán)境友好型和大容量介質(zhì)再生系
統(tǒng),這自主地保持在介質(zhì)的質(zhì)量在線切割加工機(jī)內(nèi)循環(huán),也一直實(shí)驗(yàn)[117] 。然
而,由于考慮仍要給予改善WED 性能并提升自動化為未來整合的水平內(nèi)的電火花
線切割機(jī)床和工藝CIM 環(huán)境[118] 。然后,將能夠合理滿足高技能電火花短缺/
線切割機(jī)床經(jīng)營者和實(shí)現(xiàn)更具成本效益和成本有效的機(jī)械加工操作。
6 結(jié)束語
WEDM 是一種行之有效的非傳統(tǒng)能夠滿足材料去除過程由提出要求的不同加
工要求金屬切削行業(yè)。它已被普遍適用于加工和微機(jī)械加工零件復(fù)雜形狀和不同
硬度要求高調(diào)的準(zhǔn)確性和嚴(yán)格的尺寸公差。但是該方法的主要缺點(diǎn)是相對低的加
工速度,相比于其他非傳統(tǒng)的加工工藝,如激光切割的過程中,主要是由于其熱
加工技術(shù)。此外,較新的發(fā)展而更奇特的材料提出了挑戰(zhàn)生存能力在未來的制造
業(yè)在線切割加工過程中環(huán)境。因此,持續(xù)改進(jìn)需要可向電流線切割加工性狀,以
擴(kuò)大加工能力,提高了加工生產(chǎn)率和效率。
在線切割加工過程的最終目標(biāo)是實(shí)現(xiàn)了準(zhǔn)確,高效的加工操作而不損害機(jī)械
加工性能。這主要是進(jìn)行以理解的相互關(guān)系影響的各種因素之間的過程和確定最
佳的加工條件其外的組合無限多。該自適應(yīng)監(jiān)測和控制系統(tǒng)也有被廣泛實(shí)施馴服
瞬態(tài)電火花線切割加工行為,而不線斷裂的風(fēng)險。此外,一些監(jiān)測和控制算法基
于顯式的數(shù)學(xué)模型,專家的知識或智能系統(tǒng)已經(jīng)報道減少所引起的振動特性的誤
差和電線的靜撓度。與連續(xù)趨勢走向無人值守加工操作和自動化,在線切割加工
過程必須不斷提高維護(hù)作為競爭和在現(xiàn)代模具車間經(jīng)濟(jì)的加工操作制造領(lǐng)域。雖
然筆者認(rèn)為該電火花線切割加工過程中,因?yàn)樗軌蛴行У貦C(jī)械零件與難加工材
料和幾何形狀具有無法比擬的它自己的應(yīng)用程序領(lǐng)域。
致謝
作者要感謝支持拉夫堡大學(xué),特別是在歐勝機(jī)械與制造工程學(xué)院用于資助當(dāng)
前的研究獎學(xué)金。
參考文獻(xiàn)
[1] E.C.詹姆森, 描述和放電的發(fā)展加工(EDM)、電火花加工技術(shù),社會的制
造工程師,Dearbern,密歇根州2001 年,頁16。
[2] G.F.本尼迪克特,放電加工(EDM),非傳統(tǒng)制造過程,馬塞爾· 戴克,公
司新紐約& 巴塞爾,1987 年,頁231–232。
[3] K.H.何世倜紐曼先進(jìn)的電氣放電加工(EDM),int。J.電機(jī)工具麥迪43 (13)
(2003 年)1287–1300。
[4] A.B.普里,B.巴氏、分析和優(yōu)化由于鋼絲滯后現(xiàn)象中的幾何誤差電火花線
切割、int。J.電機(jī)工具麥迪43 (2) (2003 年) 151–159。
[5] E.I. Shobert,EDM: E.C.詹姆森(Ed),放電加工: 模具、方法和應(yīng)用
程序,社會的制造工程師,Dearbern,密歇根州,1983 年,頁3-4。
[6] H.C.Tsai, B.H.燕F.Y.黃、電火花加工性能的Cr /以銅為基礎(chǔ)的復(fù)合電
極,int。J.電機(jī)工具麥迪43(3) (2003 年) 245–252。
[7] G.A.K.溫斯頓,非常規(guī)加工過程、加工,馬塞爾· 戴克,公司的基本原
理,1989 年,頁491。
[8] J.A.麥古、機(jī)械加工、先進(jìn)的方法Electrodischarge 加工,查普曼& 大
廳,倫敦,1988 年,130 頁。
[9] 舊金山Krar,人類復(fù)選,電火花加工技術(shù)機(jī)床、格倫科/麥格勞-希爾、紐
約,1997 年,頁800。
[10] M.枝,C.古館,高精度完成切割的干電火花線切割、安CIRP 50 (1) (2001)
121–124。
[11] S.Kalpajian,S.R.施密德,材料去除過程: 磨料,化學(xué)、電氣和高能光
束,制造普倫蒂斯霍爾,新澤西,工程材料的過程2003 年,頁544。
[12] E.A.Huntress,放電加工,是鉗工122 (8) (1978) 83–98。
[13] T.Masuzawa,香港有限公司滕斯霍夫,三維微細(xì)加工由加工工具、安CIRP
46 (2) (1997) 621–628。
[14] T.Masuzawa M.藤野,小林,N.T.Suzuski 木下,磨的微加工、放電安CIRP
34 (1) (1985 年) 431–434。
__
桂林電子科技大學(xué)信息科技學(xué)院畢業(yè)設(shè)計(論文)外文翻譯(原文) 第 20 頁 共 20 頁
編號:
桂林電子科技大學(xué)信息科技學(xué)院
畢業(yè)設(shè)計(論文)外文翻譯
(譯文)
系 (部): 機(jī)電工程系
專 業(yè): 機(jī)械設(shè)計制造及其自動化
學(xué)生姓名: 陳良
學(xué) 號: 1053100406
指導(dǎo)教師單位: 教學(xué)實(shí)踐部
姓 名: 劉建偉
職 稱: 高級實(shí)驗(yàn)師
2014年 5月 20 日
International Journal of Machine Tools & Manufacture 44 (2004) 1247–1259
www.elsevier.com/locate/ijmactool
State of the art in wire electrical discharge machining (WEDM)
K.H. Ho, S.T. Newman_, S. Rahimifard, R.D. Allen
Advanced Manufacturing Systems and Technology Centre, Wolfson School of Mechanical and Manufacturing Engineering,
Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
Received 13 October 2003; accepted 29 April 2004
Abstract
Wire electrical discharge machining (WEDM) is a specialised thermal machining process capable of accurately machining parts with varying hardness or complex shapes, which have sharp edges that are very difficult to be machined by the main stream machining processes. This practical technology of the WEDM process is based on the conventional EDM sparking phenomenon utilising the widely accepted non-contact technique of material removal. Since the introduction of the process, WEDM has evolved from a simple means of making tools and dies to the best alternative of producing micro-scale parts with the highest degree of dimensional accuracy and surface finish quality.
Over the years, the WEDM process has remained as a competitive and economical machining option fulfilling the demanding machining requirements imposed by the short product development cycles and the growing cost pressures. However, the risk of wire breakage and bending has undermined the full potential of the process drastically reducing the efficiency and accuracy of the WEDM operation. A significant amount of research has explored the different methodologies of achieving the ultimate WEDM goals of optimising the numerous process parameters analytically with the total elimination of the wire breakages thereby also improving the overall machining reliability.
This paper reviews the vast array of research work carried out fromthe spin-off fromthe EDM process to the development of the WEDM. It reports on the WEDM research involving the optimisation of the process parameters surveying the influence of the various factors affecting the machining performance and productivity. The paper also highlights the adaptive monitoring and control of the process investigating the feasibility of the different control strategies of obtaining the optimal machining conditions. A wide range of WEDM industrial applications are reported together with the development of the hybrid machining processes.The final part of the paper discusses these developments and outlines the possible trends for future WEDM research.
Keywords: Wire electrical discharge machining (WEDM); Hybrid machining process; Process optimisation; Cutting rate; Matenal removal rate;
Surface finish
1. Introduction
Wire electrical discharge machining (WEDM) is a widely accepted non-traditional material removal process used to manufacture components with intricate shapes and profiles. It is considered as a unique adaptation of the conventional EDM process, which uses an electrode to initialise the sparking process. However,WEDM utilises a continuously travelling wire electrode made of thin copper, brass or tungsten of diameter 0.05–0.3 mm, which is capable of achieving very small corner radii. The wire is kept in tension using a mechanical tensioning device reducing the tendency of producing inaccurate parts. During the WEDM process,the material is eroded ahead of the wire and there is no direct contact between the workpiece and the wire,eliminating the mechanical stresses during machining. In addition, the WEDM process is able to machine exotic and high strength and temperature resistive (HSTR) materials and eliminate the geometrical changes occurring in the machining of heat-treated steels.
WEDM was first introduced to the manufacturing industry in the late 1960s. The development of the process was the result of seeking a technique to replace the machined electrode used in EDM. In 1974, D.H. Dulebohn applied the optical-line follower systemto automatically control the shape of the component to be machined by the WEDM process [1]. By 1975, its popularity was rapidly increasing, as the process and its capabilities were better understood by the industry
[2]. It was only towards the end of the 1970s, when computer numerical control (CNC) system was initiated into WEDM that brought about a major evolution of the machining process. As a result, the broad capabilities of the WEDM process were extensively exploited for any through-hole machining owing to the wire, which has to pass through the part to be machined. The common applications of WEDM include the fabrication of the stamping and extrusion tools and dies, fixtures and gauges, prototypes, aircraft and medical parts, and grinding wheel form tools.
This paper provides a review on the various academic research areas involving the WEDM process, and is the sister paper to a review by Ho and Newman [3] on die-sinking EDM. It first presents the process overview based on the widely accepted principle of thermal conduction
and highlights some of its applications. The main section of the paper focuses on the major
WEDM research activities, which include the WEDM process optimisation together with the WEDM process monitoring and control. The final part of the paper discusses these topics and suggests the future WEDM research direction.
2. WEDM
This section provides the basic principle of the WEDM process and the variations of the process combining other material removal techniques.
2.1. WEDM process
The material removal mechanism of WEDM is very similar to the conventional EDM process involving the erosion effect produced by the electrical discharges (sparks). In WEDM, material is eroded from the workpiece by a series of discrete sparks occurring between the workpiece and the wire separated by a streamof dielectric fluid, which is continuously fed to the machining zone [4]. However, today’s WEDM process is commonly conducted on workpieces that are totally submerged in a tank filled with dielectric fluid. Such a submerged method of WEDM promotes temperature stabilisation and efficient flushing especially in cases where the workpiece has varying thickness. The WEDM process makes use of electrical energy generating
a channel of plasma between the cathode and anode [5], and turns it into thermal energy [6] at a temperature in the range of 8000–12,000 vC [7] or as high as 20,000 vC [8] initialising a substantial amount of heating and melting of material on the surface of each pole. When the pulsating direct current power supply occurring between 20,000 and 30,000 Hz [9] is turned off, the plasma channel breaks down. This causes a sudden reduction in the temperature allowing the circulating dielectric fluid to implore the plasma channel and flush the molten particles from the pole surfaces in the formof microscopic debris.While the material removal mechanisms of EDM and WEDM are similar, their functional characteristics are not identical. WEDM uses a thin wire continuously feeding through the workpiece by a microprocessor, which enable parts of complex shapes to be machined with exceptional high accuracy. A varying degree of taper ranging from15 v for a 100 mm thick to 30v for a 400 mm thick workpiece can also be obtained on the cut surface. The microprocessor also constantly maintains the gap between the wire and the workpiece, which varies from0.025 to 0.05 mm [2]. WEDM eliminates the need for elaborate pre-shaped electrodes,which are commonly required in EDM to perform the roughing and finishing operations. In the case of WEDM, the wire has to make several machining passes
along the profile to be machined to attain the required dimensional accuracy and surface finish (SF) quality. Kunieda and Furudate [10] tested the feasibility of conducting dry WEDM to improve the accuracy of the finishing operations, which was conducted in a gas atmosphere without using dielectric fluid. The typical WEDM cutting rates (CRs) are 300 mm2/min for a
50 mm thick D2 tool steel and 750 mm2/min for a 150 mm thick aluminium [11], and SF quality is as fine as 0.04–0.25 lRa. In addition, WEDM uses deionised water instead of hydrocarbon oil as the dielectric fluid and contains it within the sparking zone. The deionised water is not suitable for conventional EDM as it causes rapid electrode wear, but its low viscosity and rapid cooling rate make it ideal for WEDM [12].
2.2. Hybrid machining processes
There are a number of hybrid machining processes (HMPs) seeking the combined advantage of WEDM with other machining techniques. One such combination is wire electrical discharge grinding (WEDG),which is commonly used for the micro-machining of fine rods utilized in the electronic circuitry. WEDG employs a single wire guide to confine the wire tension within the discharge area between the rod and the front edge of the wire and to minimise the wire vibration.
Therefore, it is possible to grind a rod that is as small as 5 lmin diameter [13] with high accuracy, good repeatability and satisfactory straightness [14]. Other advantages of WEDG include the ability to machine a rod with a large aspect ratio, maintaining the concentricity of the rod and providing a wider choice of complex shapes such as tapered and stepped shapes at 1248 K.H. Ho et al. / International Journal of Machine Tools & Manufacture 44 (2004) 1247–1259 various sections [15]. Several authors [16–19] have employed the WEDG process in the micro-machining of fine electrodes or pins with a large aspect-ratio, which are difficult to be machined by traditional precision micro-machining methods such as Micro-EDM,LIGA and excimer laser drilling.
Some of the HMPs seek to improve the WEDM performance measures such as the surface integrity and the CR. For example, the ultrasonic vibration is applied to the wire electrode to improve the SF quality together with the CR and to reduce the residual stress on the machined surface [20]. On the other hand, the wire electrochemical grinding (WECG) process replaces the electrical discharge used in WEDG with an electrochemical solution to produce high SF quality part for a wide range of machining condition [15]. Masuzawa et al. [13,15] compared the SF quality obtained from the WECG with WEDG, which is suitable for finishing micro-parts. A rotary axis is also added to WEDM to achieve higher material removal rate (MRR) and to enable the generation of free-formcylind rical geometries [21,22]. The effects of the various process parameters such as part rotational speed, wire feed rate and pulse on-time on the surface integrity and roundness of the part produced have been investigated in the same feasibility study [23].
3. WEDM applications
This section discusses the viability of the WEDM process in the machining of the various materials used particularly in tooling applications.
3.1. Modern tooling applications
WEDM has been gaining wide acceptance in the machining of the various materials used in modern tooling applications. Several authors [24,25] have investigated the machining performance of WEDM in the wafering of silicon and machining of compacting dies made of sintered carbide. The feasibility of using cylindrical WEDM for dressing a rotating metal bond diamond wheel used for the precision form grinding of ceramics has also been studied [22]. The results show that the WEDM process is capable of generating precise and intricate profiles with small corner radii but a high wear rate is observed on the diamond wheel during the first grinding pass. Such an initial high wheel wear rate is due to the over-protruding diamond grains, which do not bond strongly to the wheel after the WEDM process [26]. The WEDM of permanent NdFeB and ‘soft’ MnZn ferrite magnetic materials used in miniature systems, which requires small magnetic parts, was studied by comparing it with the laser-cutting process [27]. It was found that the WEDM process yields better dimensional accuracy and SF quality but has a slow CR, 5.5 mm/min for NdFeB and 0.17 mm/min for MnZn ferrite. A study was also done to investigate the machining performance of micro-WEDM used to machine a high aspect ratio meso-scale part using a variety of metals including stainless steel, nitronic austentic stainless, beryllium copper and titanium [28].
3.2. Advanced ceramic materials
The WEDM process has also evolved as one of the most promising alternatives for the machining of the advanced ceramics. Sanchez et al. [29] provided a literature survey on the EDM of advanced ceramics,which have been commonly machined by diamond grinding and lapping. In the same paper, they studied the feasibility of machining boron carbide (B4C) and silicon infiltrated silicon carbide (SiSiC) using EDM and WEDM. Cheng et al. [30] also evaluated the possibility of machining ZrB2 based materials using EDM and WEDM, whereas Matsuo and Oshima [31] examined the effects of conductive carbide content, namely niobiumcarbide (NbC) and titaniumcarbide (TiC), on the CR and surface roughness of zirconia ceramics (ZrO2) during WEDM. Lok and Lee [32] have successfully WEDMed sialon 501 and aluminium oxide–titaniumcarbide (Al2O3–TiC). However, they realized that the MRR is very low as compared to the cutting of metals such as alloy steel SKD-11 and the surface roughness is generally inferior to the one obtained with the EDM process. Dauw et al. [33] explained that the MRR and surface roughness are not only dependent on the machining parameters but also on the material of the part.
An innovative method of overcoming the technological limitation of the EDM and WEDM processes requiring the electrical resistivity of the material with threshold values of approximately 100 X/cm [34] or 300 X/cm [35] has recently been explored. There are different grades of engineering ceramics, which Konig et al. [34] classified as non-conductor, natural-conductor and conductor, which is a result of doping nonconductors with conductive elements. Mohri et al. [36] brought a new perspective to the traditional EDM phenomenon by using an assisting electrode to facilitate the sparking of highly electrical-resistive ceramics.
Both the EDM and WEDM processes have been successfully tested diffusing conductive particles from assisting electrodes onto the surface of sialon ceramics assisting the feeding the electrode through the insulating material. The same technique has also been experimented on other types of insulating ceramic materials including oxide ceramics such as ZrO2 and Al2O3, which have very limiting electrical conductive properties [37].
3.3. Modern composite materials
Among the different material removal processes, WEDM is considered as an effective and economical tool in the machining of modern composite materials.Several comparative studies [38,39] have been made between WEDM and laser cutting in the processing of metal matrix composites (MMC), carbon fibre and reinforced liquid crystal polymer composites. These studies showed that WEDM yields better cutting edge quality and has better control of the process parameters with fewer workpiece surface damages. However,it has a slower MRR for all the tested composite materials. Gadalla and Tsai [40] compared WEDM with conventional diamond sawing and discovered that it produces a roughness and hardness that is comparable to a low speed diamond saw but with a higher MRR. Yan et al. [41] surveyed the various machining processes performed on the MMC and experimented with the machining of Al2O3/6061Al composite using rotary EDM coupled with a disk-like electrode. Other studies [42,43] have been conducted on the WEDM of Al2O3 particulate reinforced composites investigating the effect of the process parameters on the WEDM performance measures. It was found that the process parameters have little influence on the surface roughness but have an adverse effect on CR.
4. Major areas of WEDM research
The authors have organised the various WEDM research into two major areas namely WEDM process optimisation together with WEDM process monitoring and control.
4.1. WEDM process optimisation
Today, the most effective machining strategy is determined by identifying the different factors affecting the WEDM process and seeking the different ways of obtaining the optimal machining condition and performance.This section provides a study on the numerous machining strategies involving the design of the process parameter and the modelling of the process.
4.1.1. Process parameters design
The settings for the various process parameters required in the WEDM process play a crucial role in producing an optimal machining performance. This section shows some of the analytical and statistical methods used to study the effects of the parameters on
the typical WEDM performance measures such as CR,
MRR and SF.
4.1.1.1. Factors affecting the performance measures.
WEDM is a complex machining process controlled by a large number of process parameters such as the pulse duration, discharge frequency and discharge current intensity. Any slight variations in the process parameters can affect the machining performance measures such as surface roughness and CR, which are two of the most significant aspects of the WEDM operation [44]. Suziki and Kishi [45] studied the reduction of discharge energy to yield a better surface roughness, while Luo [46] discovered the additional need for a highenergy efficiency to maintain a high machining rate without damaging the wire. Several authors [47] have also studied the evolution of the wire tool performance affecting the machining accuracy, costs and performance measures.
The selection of appropriate machining conditions for the WEDM process is based on the analysis relating the various process parameters to different performance measures namely the CR, MRR and SF.
Traditionally, this was carried out by relying heavily on the operator’s experience or conservative technological data provided by the WEDM equipment manufacturers, which produced inconsistent machining performance. Levy and Maggi [48] demonstrated that the
parameter settings given by the manufacturers are only applicable for the common steel grades. The settings for machining new materials such as advanced ceramics and MMCs have to be further optimised experimentally.
4.1.1.2. Effects of the process parameters on the cutting rate.
Many different types of problem-solving quality tools have been used to investigate the significant factors and its inter-relationships with the other variables in obtaining an optimal WEDM CR. Konda et al. [49] classified the various potential factors affecting the WEDM performance measures into five major categories namely the different properties of the workpiece material and dielectric fluid, machine characteristics, adjustable machining parameters, and component geometry. In addition, they applied the design of experiments (DOE) technique to study and optimize the possible effects of variables during process design and development, and validated the experimental results using noise-to-signal (S/N) ratio analysis. Tarng et al. [50] employed a neural network system with the application of a simulated annealing algorithm for solving the multi-response optimisation problem. It was found that the machining parameters such as the pulse on/off duration, peak current, open circuit voltage,
servo reference voltage, electrical capacitance and table speed are the critical parameters for the estimation of the CR and SF. Huang et al. [51] argued that several published works [50,52