2019-2020年高中數(shù)學 16.概率綜合測試 蘇教版必修3.doc
《2019-2020年高中數(shù)學 16.概率綜合測試 蘇教版必修3.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學 16.概率綜合測試 蘇教版必修3.doc(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 16.概率綜合測試 蘇教版必修3 一、填空題(本大題共14小題,每小題5分,共70分,) 1.已知5只球中有2只紅球和3只白球,從中任取3只球,寫出一個必然事件: . 2.某廠產(chǎn)品的合格率為97%,估計該廠5000件產(chǎn)品中不合格的件數(shù)約為 3.在如圖所示的正方形中隨機擲一粒豆子,豆子落在正方形內(nèi)切圓的上半圓(圖中陰影部分)中的概率是 . 4 .從中任取個不同的數(shù),則取出的個數(shù)之差的絕對值為的概率是 5.在區(qū)間上隨機地取一個數(shù)x,若x滿足的概率為,則__________. 6.一根繩子長為6米, 繩上有5個節(jié)點將繩子6等分, 現(xiàn)從5個節(jié)點中隨機選一個將繩子剪斷, 則所得的兩段繩長均不小于2米的概率為 . 7.將甲、乙兩個球隨機放入編號為1,2,3的3個盒子中,每個盒子的放球數(shù)量不限,則在1,2號盒子中各有1個球的概率為 . 8.袋中裝有大小相同且形狀一樣的四個球,四個球上分別標有2,3,4,6這四個數(shù),現(xiàn)從中隨機選取三個球,則所選的三個球上的數(shù)恰好能構(gòu)成一個等差數(shù)列的概率是 . 9.從邊長為1的正方形的中心和頂點這五點中,隨機(等可能)取兩點,則該兩點間的距離為的概率是 . 10.甲、乙兩人街頭約會,約定誰先到后須等待10分鐘,這時若另一個人還沒有來就可離開.如果甲1點半到達.假設(shè)乙在1點到2點之間何時到達是等可能的,則甲、乙能會面的概率為 . 11.沿田字型的路線從A往N走,且只能向右或向下走,隨機地選一種走法,則經(jīng)過點C的概率是______ 12 .若某公司從五位大學畢業(yè)生甲、乙、丙、丁、戌中錄用三人,這五人被錄用的機會均等,則甲或乙被錄用的概率為 . 13.設(shè)∈[0,10)且≠1,則函數(shù)在(0,+∞)內(nèi)為增函數(shù),且在(0,+∞)內(nèi)也為增函數(shù)的概率為________. 14 .已知事件“在矩形的邊上隨機取一點,使的最大邊是”發(fā)生的概率為,則=____ ( ?。? 二、解答題(本大題共6小題,共90分,解答應寫出文字說明、證明過程或演算步驟) 15.(本題14分)從裝有編號分別為的2個黃球和編號分別為 的2個紅球的袋中無放回地摸球,每次任摸一球,求: (1)第1次摸到黃球的概率; (2)第2次摸到黃球的概率. 16.(本題滿分14分)5張獎券中有2張是中獎的,首先由甲抽一張,然后由乙抽一張,求: (1)甲中獎的概率P(A). (2)甲、乙都中獎的概率P(B). (3)只有乙中獎的概率P(C). (4)乙中獎的概率P(D). 17.(本題14分)(xx年高考天津卷(文))某產(chǎn)品的三個質(zhì)量指標分別為, 用綜合指標評價該產(chǎn)品的等級. 若,則該產(chǎn)品為一等品. 先從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標列表如下: 產(chǎn)品編號 A1 A2 A3 A4 A5 質(zhì)量指標 (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1) 產(chǎn)品編號 A6 A7 A8 A9 A10 質(zhì)量指標 (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2) (Ⅰ) 利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率; (Ⅱ) 在該樣品的一等品中, 隨機抽取兩件產(chǎn)品, ① 用產(chǎn)品編號列出所有可能的結(jié)果; ②設(shè)事件為 “在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標都等于4”, 求事件發(fā)生的概率. 18.(本題16分)(xx年高考山東卷(文))某小組共有五位同學,他們的身高(單位:米)以及體重指標(單位:千克/米2),如下表所示: A B C D E 身高 1.69 1.73 1.75 1.79 1.82 體重指標 19.2 25.1 18.5 23.3 20.9 (1)從該小組身高低于1.80的同學中任選2人,求選到的2人身高都在1.78以下的概率. (2)從該小組同學中任選2人,求選到的2人的身高都在1.70以上且體重指標都在[18.5,23.9)中的概率. 19.(本題滿分16分)甲、乙二人用4張撲克牌(分別是紅桃2, 紅桃3, 紅桃4, 方片4)玩游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張. (1)設(shè)(i,j)分別表示甲、乙抽到的牌的數(shù)字,寫出甲、乙二人抽到的牌的所有情況. (2)若甲抽到紅桃3,則乙抽出的牌的牌面數(shù)字比3大的概率是多少? (3)甲、乙約定:若甲抽到的牌的牌面數(shù)字比乙大,則甲勝;反之,則乙勝.你認為此游戲是否公平?說明你的理由. 20.(本題滿分16分)已知函數(shù) (1)若從集合中任取一個元素,從集合中任取一個元素,求方程恰有兩個不相等實根的概率; (2)若從區(qū)間中任取一個數(shù),從區(qū)間中任取一個數(shù),求方程沒有實根的概率. 參考答案 一、填空題(本大題共14小題,每小題5分,共70分,) 1.至少有一只白球;2.150;3.;;4.;5.3;6.;7.; 8.;9.;10.;11.;12.;13.;14. 二、解答題(本大題共6小題,共90分,解答應寫出文字說明、證明過程或演算步驟) 15. (1)第1次摸球有4個可能的結(jié)果:,其中第1次摸到黃球的結(jié)果包括:,故第1次摸到黃球的概率是. (2)先后兩次摸球有12種可能的結(jié)果:()()(,)(,)(,)(,)(,)(,)(,)(,)(,)(,),其中第2次摸到黃球的結(jié)果包括:(,)(,)(,)(,)(,)(,),故第2次摸到黃球的概率為. 16.將5張獎券編號為1,2,3,4,5,其中4、5為中獎獎券,用(x,y)表示甲抽到號碼x,乙抽到號碼y,則所有的基本事件有: (1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4). (1)甲中獎包含8個基本事件,∴P(A)==. (2)甲、乙都中獎包含2個基本事件,∴P(B)==. (3)只有乙中獎包含6個基本事件,∴P(C)==. (4)乙中獎包含8個基本事件,∴P(D)==. 17.解(1)計算10件產(chǎn)品的綜合指標,如下表: 產(chǎn)品編號 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 4 4 6 3 4 5 4 5 3 5 其中的有共6件,故該樣本的一等品率為.從而可估計該批產(chǎn)品的一等品率為0.6. (2)①在該樣品的一等品中,隨機抽取2件產(chǎn)品的所有可能結(jié)果為,共15種. ②在該樣本的一等品中,綜合指標等于4的產(chǎn)品編號分別為,則事件發(fā)生的所有可能結(jié)果為共6種,所以. 18.解 (1)從身高低于1.80的同學中任選2人,其一切可能的結(jié)果組成的基本事件有: 共6個.由于每個人被選到的機會均等,因此這些基本事件的出現(xiàn)是等可能的.選到的2人身高都在1.78以下的事件有:共3個,因此選到的2人身高都在1.78以下的概率為. (2)從該小組同學中任選2人,其一切可能的結(jié)果組成的基本事件有:共10個,由于每個人被選的到的機會均等,因此這些基本事件的出現(xiàn)是等可能的.選到的2人的身高都在1.70以上且體重指標都在[18.5,23.9)中的事件有:共3個,因此選到的2人的身高都在1.70以上且體重指標都在[18.5,23.9)中的概率為. 19.解(1)甲、乙二人抽到的牌的所有情況(方片4用4′表示)為:(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),( 4′,2),(4′,3),(4′,4),共12種不同情況. (2)甲抽到紅桃3,則乙抽到的牌只能是紅桃2,紅桃4,方片4,因此乙抽到的牌的數(shù)字大于3的概率為. (3)不公平.由甲抽到牌的牌面數(shù)字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3)5種, 甲勝的概率為乙勝的概率為.∵, 所以此游戲不公平. 20.解 從集合中任取一個元素,從集合中任取一個元素,其基本事件有:(0,0),(0,1),(0,2)(0,3),(1,0),(1,1)(1,2)(1,3),(2,0),(2,1)(2,2),(2,3),(3,0)(3,1),(,3,2)(3,3),其中第一個數(shù)表示的取值,第二個數(shù)表示的取值,即基本事件總數(shù)為16. 設(shè)“方程恰有兩個不相等實根”為事件,滿足,又,從而有,故事件包含的基本事件為(1,2)(1,3),(2,3)共3個,所以方程恰有兩個不相等實根的概率. (2)根據(jù)題意,試驗的全部結(jié)果構(gòu)成區(qū)域,這是一個矩形區(qū)域,其面積為6. 設(shè)“方程沒有實根”為事件,則事件所構(gòu)成的區(qū)域為,其面積為4.故所求概率.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學 16.概率綜合測試 蘇教版必修3 2019 2020 年高 數(shù)學 16. 概率 綜合測試 蘇教版 必修
鏈接地址:http://kudomayuko.com/p-1981928.html