2019年高考數(shù)學(xué)真題分類匯編 11.3 隨機(jī)抽樣、用樣本估計(jì)總體 文.doc
2019年高考數(shù)學(xué)真題分類匯編 11.3 隨機(jī)抽樣、用樣本估計(jì)總體 文
考點(diǎn)一 隨機(jī)抽樣
1.(xx重慶,3,5分)某中學(xué)有高中生3 500人,初中生1 500人.為了解學(xué)生的學(xué)習(xí)情況,用分層抽樣的方法從該校學(xué)生中抽取一個(gè)容量為n的樣本,已知從高中生中抽取70人,則n為( )
A.100 B.150 C.200 D.250
答案 A
2.(xx湖南,3,5分)對(duì)一個(gè)容量為N的總體抽取容量為n的樣本,當(dāng)選取簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣三種不同方法抽取樣本時(shí),總體中每個(gè)個(gè)體被抽中的概率分別為p1,p2,p3,則( )
A.p1=p2<p3 B.p2=p3<p1 C.p1=p3<p2 D.p1=p2=p3
答案 D
3.(xx四川,2,5分)在“世界讀書日”前夕,為了了解某地5 000名居民某天的閱讀時(shí)間,從中抽取了200名居民的閱讀時(shí)間進(jìn)行統(tǒng)計(jì)分析.在這個(gè)問題中,5 000名居民的閱讀時(shí)間的全體是( )
A.總體 B.個(gè)體
C.樣本的容量 D.從總體中抽取的一個(gè)樣本
答案 A
4.(xx廣東,6,5分)為了解1 000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為( )
A.50 B.40 C.25 D.20
答案 C
5.(xx天津,9,5分)某大學(xué)為了解在校本科生對(duì)參加某項(xiàng)社會(huì)實(shí)踐活動(dòng)的意向,擬采用分層抽樣的方法,從該校四個(gè)年級(jí)的本科生中抽取一個(gè)容量為300的樣本進(jìn)行調(diào)查.已知該校一年級(jí)、二年級(jí)、三年級(jí)、四年級(jí)的本科生人數(shù)之比為4∶5∶5∶6,則應(yīng)從一年級(jí)本科生中抽取 名學(xué)生.
答案 60
6.(xx湖北,11,5分)甲、乙兩套設(shè)備生產(chǎn)的同類型產(chǎn)品共4 800件,采用分層抽樣的方法從中抽取一個(gè)容量為80的樣本進(jìn)行質(zhì)量檢測(cè).若樣本中有50件產(chǎn)品由甲設(shè)備生產(chǎn),則乙設(shè)備生產(chǎn)的產(chǎn)品總數(shù)為 件.
答案 1 800
7.(xx山東,16,12分)海關(guān)對(duì)同時(shí)從A,B,C三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測(cè),從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如下表所示.工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進(jìn)行檢測(cè).
(1)求這6件樣品中來自A,B,C各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)行進(jìn)一步檢測(cè),求這2件商品來自相同地區(qū)的概率.
地區(qū)
A
B
C
數(shù)量
50
150
100
解析 (1)因?yàn)闃颖救萘颗c總體中的個(gè)體數(shù)的比是=,
所以樣本中包含三個(gè)地區(qū)的個(gè)體數(shù)量分別是:
50=1,150=3,100=2,
所以A,B,C三個(gè)地區(qū)的商品被選取的件數(shù)分別為1,3,2.
(2)設(shè)6件來自A,B,C三個(gè)地區(qū)的樣品分別為:A;B1,B2,B3;C1,C2,
則抽取的這2件商品構(gòu)成的所有基本事件為:
{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15個(gè).
每個(gè)樣品被抽到的機(jī)會(huì)均等,因此這些基本事件的出現(xiàn)是等可能的.
記事件D:“抽取的這2件商品來自相同地區(qū)”,
則事件D包含的基本事件有
{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4個(gè).
所以P(D)=,即這2件商品來自相同地區(qū)的概率為.
考點(diǎn)二 統(tǒng)計(jì)圖表
8.(xx山東,8,5分)為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn).所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號(hào)為第一組,第二組,……,第五組.如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為( )
A.6 B.8 C.12 D.18
答案 C
9.(xx北京,18,13分)從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:
組號(hào)
分組
頻數(shù)
1
[0,2)
6
2
[2,4)
8
3
[4,6)
17
4
[6,8)
22
5
[8,10)
25
6
[10,12)
12
7
[12,14)
6
8
[14,16)
2
9
[16,18)
2
合計(jì)
100
(1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;
(2)求頻率分布直方圖中的a,b的值;
(3)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的100名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第幾組.(只需寫出結(jié)論)
解析 (1)根據(jù)頻數(shù)分布表知,100名學(xué)生中一周課外閱讀時(shí)間不少于12小時(shí)的學(xué)生共有6+2+2=10名,所以樣本中的學(xué)生一周課外閱讀時(shí)間少于12小時(shí)的頻率是1-=0.9.
故從該校隨機(jī)選取一名學(xué)生,估計(jì)其該周課外閱讀時(shí)間少于12小時(shí)的概率為0.9.
(2)課外閱讀時(shí)間落在組[4,6)內(nèi)的有17人,頻率為0.17,所以a===0.085.
課外閱讀時(shí)間落在組[8,10)內(nèi)的有25人,頻率為0.25,所以b===0.125.
(3)樣本中的100名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第4組.
10.(xx課標(biāo)Ⅰ,18,12分)從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組
[75,85)
[85,95)
[95,105)
[105,115)
[115,125)
頻數(shù)
6
26
38
22
8
(1)作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?
解析 (1)
(2)質(zhì)量指標(biāo)值的樣本平均數(shù)為
=800.06+900.26+1000.38+1100.22+1200.08=100.
質(zhì)量指標(biāo)值的樣本方差為
s2=(-20)20.06+(-10)20.26+00.38+1020.22+2020.08=104.
所以這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)的估計(jì)值為100,方差的估計(jì)值為104.
(3)質(zhì)量指標(biāo)值不低于95的產(chǎn)品所占比例的估計(jì)值為
0.38+0.22+0.08=0.68.
由于該估計(jì)值小于0.8,故不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定.
考點(diǎn)三 樣本的數(shù)字特征
11.(xx陜西,9,5分)某公司10位員工的月工資(單位:元)為x1,x2,…,x10,其均值和方差分別為和s2,若從下月起每位員工的月工資增加100元,則這10位員工下月工資的均值和方差分別為( )
A.,s2+1002 B.+100,s2+1002
C.,s2 D.+100,s2
答案 D
12.(xx課標(biāo)Ⅱ,19,12分)某市為了考核甲、乙兩部門的工作情況,隨機(jī)訪問了50位市民.根據(jù)這50位市民對(duì)這兩部門的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越高),繪制莖葉圖如下:
甲部門
乙部門
4
97
97665332110
98877766555554443332100
6655200
632220
3
4
5
6
7
8
9
10
59
0448
122456677789
011234688
00113449
123345
011456
000
(1)分別估計(jì)該市的市民對(duì)甲、乙兩部門評(píng)分的中位數(shù);
(2)分別估計(jì)該市的市民對(duì)甲、乙兩部門的評(píng)分高于90的概率;
(3)根據(jù)莖葉圖分析該市的市民對(duì)甲、乙兩部門的評(píng)價(jià).
解析 (1)由所給莖葉圖知,50位市民對(duì)甲部門的評(píng)分由小到大排序,排在第25,26位的是75,75,故樣本中位數(shù)為75,所以該市的市民對(duì)甲部門評(píng)分的中位數(shù)的估計(jì)值是75.50位市民對(duì)乙部門的評(píng)分由小到大排序,排在第25,26位的是66,68,故樣本中位數(shù)為=67,所以該市的市民對(duì)乙部門評(píng)分的中位數(shù)的估計(jì)值是67.
(2)由所給莖葉圖知,50位市民對(duì)甲、乙部門的評(píng)分高于90的比率分別為=0.1,=0.16,故該市的市民對(duì)甲、乙部門的評(píng)分高于90的概率的估計(jì)值分別為0.1,0.16.
(3)由所給莖葉圖知,市民對(duì)甲部門的評(píng)分的中位數(shù)高于對(duì)乙部門的評(píng)分的中位數(shù),而且由莖葉圖可以大致看出對(duì)甲部門的評(píng)分的標(biāo)準(zhǔn)差要小于對(duì)乙部門的評(píng)分的標(biāo)準(zhǔn)差,說明該市市民對(duì)甲部門的評(píng)價(jià)較高、評(píng)價(jià)較為一致,對(duì)乙部門的評(píng)價(jià)較低、評(píng)價(jià)差異較大.
13.(xx廣東,17,13分)某車間20名工人年齡數(shù)據(jù)如下表:
年齡(歲)
工人數(shù)(人)
19
1
28
3
29
3
30
5
31
4
32
3
40
1
合計(jì)
20
(1)求這20名工人年齡的眾數(shù)與極差;
(2)以十位數(shù)為莖,個(gè)位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(3)求這20名工人年齡的方差.
解析 (1)由題表中的數(shù)據(jù)易知,這20名工人年齡的眾數(shù)是30,極差為40-19=21.
(2)這20名工人年齡的莖葉圖如下:
1
2
3
4
9
8 8 8 9 9 9
0 0 0 0 0 1 1 1 1 2 2 2
0
(3)這20名工人年齡的平均數(shù)=(191+283+293+305+314+323+401)=30,
故方差s2=[1(19-30)2+3(28-30)2+3(29-30)2+5(30-30)2+4(31-30)2+3(32-30)2+1(40-30)2]=(121+12+3+0+4+12+100)=12.6.
14.(xx湖南,17,12分)某企業(yè)有甲、乙兩個(gè)研發(fā)小組,為了比較他們的研發(fā)水平,現(xiàn)隨機(jī)抽取這兩個(gè)小組往年研發(fā)新產(chǎn)品的結(jié)果如下:
(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b),(a,b),
其中a,分別表示甲組研發(fā)成功和失敗;b,分別表示乙組研發(fā)成功和失敗.
(1)若某組成功研發(fā)一種新產(chǎn)品,則給該組記1分,否則記0分.試計(jì)算甲、乙兩組研發(fā)新產(chǎn)品的成績(jī)的平均數(shù)和方差,并比較甲、乙兩組的研發(fā)水平;
(2)若該企業(yè)安排甲、乙兩組各自研發(fā)一種新產(chǎn)品,試估計(jì)恰有一組研發(fā)成功的概率.
解析 (1)甲組研發(fā)新產(chǎn)品的成績(jī)?yōu)?,1,1,0,0,1,1,1,0,1,0,1,1,0,1,
其平均數(shù)為==;
方差為==.
乙組研發(fā)新產(chǎn)品的成績(jī)?yōu)?,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均數(shù)為==;
方差為==.
因?yàn)?gt;,<,所以甲組的研發(fā)水平優(yōu)于乙組.
(2)記E={恰有一組研發(fā)成功}.
在所抽得的15個(gè)結(jié)果中,恰有一組研發(fā)成功的結(jié)果是(a,),(,b),(a,),(,b),(a,),(a,),(,b),共7個(gè),故事件E發(fā)生的頻率為.將頻率視為概率,即得所求概率為P(E)=.
考點(diǎn)四 統(tǒng)計(jì)與概率
15.(xx重慶,17,13分)20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:
(1)求頻率分布直方圖中a的值;
(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);
(3)從成績(jī)?cè)赱50,70)的學(xué)生中任選2人,求此2人的成績(jī)都在[60,70)中的概率.
解析 (1)據(jù)題中直方圖知組距=10,由(2a+3a+6a+7a+2a)10=1,解得a==0.005.
(2)成績(jī)落在[50,60)中的學(xué)生人數(shù)為20.0051020=2.
成績(jī)落在[60,70)中的學(xué)生人數(shù)為30.0051020=3.
(3)記成績(jī)落在[50,60)中的2人為A1,A2,成績(jī)落在[60,70)中的3人為B1,B2,B3,則從成績(jī)?cè)赱50,70)的學(xué)生中任選2人的基本事件共有10個(gè):
(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),
其中2人的成績(jī)都在[60,70)中的基本事件有3個(gè):
(B1,B2),(B1,B3),(B2,B3),故所求概率為P=.
16.(xx福建,20,12分)根據(jù)世行xx年新標(biāo)準(zhǔn),人均GDP低于1 035美元為低收入國(guó)家;人均GDP為1 035~ 4 085美元為中等偏下收入國(guó)家;人均GDP為4 085~ 12 616美元為中等偏上收入國(guó)家;人均GDP不低于12 616美元為高收入國(guó)家.某城市有5個(gè)行政區(qū),各區(qū)人口占該城市人口比例及人均GDP如下表:
行政區(qū)
區(qū)人口占城
市人口比例
區(qū)人均GDP
(單位:美元)
A
25%
8 000
B
30%
4 000
C
15%
6 000
D
10%
3 000
E
20%
10 000
(1)判斷該城市人均GDP是否達(dá)到中等偏上收入國(guó)家標(biāo)準(zhǔn);
(2)現(xiàn)從該城市5個(gè)行政區(qū)中隨機(jī)抽取2個(gè),求抽到的2個(gè)行政區(qū)人均GDP都達(dá)到中等偏上收入國(guó)家標(biāo)準(zhǔn)的概率.
解析 (1)設(shè)該城市人口總數(shù)為a,則該城市人均GDP為
=6 400.因?yàn)? 400∈[4 085,12 616),
所以該城市人均GDP達(dá)到了中等偏上收入國(guó)家標(biāo)準(zhǔn).
(2)“從5個(gè)行政區(qū)中隨機(jī)抽取2個(gè)”的所有的基本事件是{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},共10個(gè).
設(shè)事件“抽到的2個(gè)行政區(qū)人均GDP都達(dá)到中等偏上收入國(guó)家標(biāo)準(zhǔn)”為M,
則事件M包含的基本事件是{A,C},{A,E},{C,E},共3個(gè),所以所求概率為P(M)=.