中考數(shù)學(xué)總復(fù)習(xí) 第一部分 教材同步復(fù)習(xí) 第三章 函數(shù) 第13講 二次函數(shù)的綜合與應(yīng)用權(quán)威預(yù)測.doc
《中考數(shù)學(xué)總復(fù)習(xí) 第一部分 教材同步復(fù)習(xí) 第三章 函數(shù) 第13講 二次函數(shù)的綜合與應(yīng)用權(quán)威預(yù)測.doc》由會員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)總復(fù)習(xí) 第一部分 教材同步復(fù)習(xí) 第三章 函數(shù) 第13講 二次函數(shù)的綜合與應(yīng)用權(quán)威預(yù)測.doc(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第一部分 第三章 第13講 如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”,[a,b,c]稱為“拋物線系數(shù)”. (1)任意拋物線都有“拋物線三角形”是假(填“真”或“假”)命題; (2)若一條拋物線系數(shù)為[1,0,-2],則其“拋物線三角形”的面積為2; (3)若一條拋物線系數(shù)為[-1,2b,0],其“拋物線三角形”是個直角三角形,求該拋物線的解析式; (4)在(3)的前提下,該拋物線的頂點為A,與x軸交于O,B兩點,在拋物線上是否存在一點P,過P作PQ⊥x軸于點Q,使得△BPQ∽△OBA?如果存在,求出P點坐標(biāo);如果不存在,請說明理由. 解:(1)∵拋物線與x軸的交點個數(shù)有三種情況:沒交點,一個交點,兩個交點,∴任意拋物線都有“拋物線三角形”是假命題. (2)∵一條拋物線系數(shù)為[1,0,-2],∴a=1,b=0,c=-2,即:拋物線的解析式為y=x2-2, 令x=0,則y=-2,令y=0,解得,x=,∴“拋物線三角形”的面積為(+)2=2. (3)依題意:y=-x2+2bx,它與x軸交于點(0,0)和(2b,0); 當(dāng)拋物線三角形是直角三角形時,根據(jù)拋物線的對稱性可知它一定是等腰直角三角形, ∴頂點為(b,b2),由直角三角形斜邊上的中線等于斜邊的一半可得b2=|2b|,解得b=0(舍去)或b=1,∴y=-x2+2x或y=-x2-2x. (4)①當(dāng)拋物線為y=-x2+2x時,∵△AOB為等腰直角三角形,且△BPQ∽△OBA,∴△BPQ為等腰直角三角形, 設(shè)P(a,-a2+2a), ∴Q(a,0),則|-a2+2a|=|2-a| 當(dāng)-a2+2a=2-a時,解得a=1或a=2(舍去), ∴P(1,1); 當(dāng)-a2+2a=-(2-a)時,解得a=-1或a=2(舍去),∴P(-1,-3). ②當(dāng)拋物線為y=-x2-2x時, ∵△AOB為等腰直角三角形,且△BPQ∽△OBA, ∴△BPQ為等腰直角三角形,設(shè)P(a,-a2-2a), ∴Q(a,0), 則|-a2-2a|=|2+a|,即|a(a+2)|=|a+2|. ∵a+2≠0,∴|a|=1,∴a=1,∴P(1,-3)或(-1,1). 綜上,存在點P的坐標(biāo)為(1,1)或(-1,-3)或(1,-3)或(-1,1).- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 中考數(shù)學(xué)總復(fù)習(xí) 第一部分 教材同步復(fù)習(xí) 第三章 函數(shù) 第13講 二次函數(shù)的綜合與應(yīng)用權(quán)威預(yù)測 中考 數(shù)學(xué) 復(fù)習(xí) 第一 部分 教材 同步 第三 13 二次 綜合 應(yīng)用 權(quán)威 預(yù)測
鏈接地址:http://kudomayuko.com/p-3741356.html