2019-2020年高中數(shù)學(xué) 2、1-3-2函數(shù)的極值與導(dǎo)數(shù)同步檢測 新人教版選修2-2 一、選擇題 1.已知函數(shù)f(x)在點x0處連續(xù)。2019-2020年高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用模塊綜合檢測B 新人教版選修2-2 一、選擇題(本大題共10小題。
新人教版選修2-2Tag內(nèi)容描述:
1、1.5 定積分的概念,第一章 導(dǎo)數(shù)及其應(yīng)用,1.了解定積分的概念. 2.理解定積分的幾何意義. 3.通過求曲邊梯形面積的過程和解決有關(guān)汽車行駛路程問題的過程,了解“以直代曲”“以不變代變”的思想. 4.能用定積分的定義求簡單的定積分.,學(xué)習(xí)目標(biāo),欄目索引,知識梳理 自主學(xué)習(xí),題型探究 重點突破,當(dāng)堂檢測 自查自糾,知識梳理 自主學(xué)習(xí),知識點一 曲邊梯形的面積和汽車行駛的路程,答案,yf(x),1.曲邊梯形的面積 (1)曲邊梯形:由直線xa,xb(ab),y0和曲線 所圍成的圖形稱為曲邊梯形(如圖所示).,答案,小曲邊梯形,(2)求曲邊梯形面積的方法 把區(qū)間a,b分。
2、1.2.2 基本初等函數(shù)的導(dǎo)數(shù)公式及 導(dǎo)數(shù)的運(yùn)算法則(二),第一章 1.2 導(dǎo)數(shù)的計算,1.理解函數(shù)的和、差、積、商的求導(dǎo)法則. 2.掌握求導(dǎo)法則的證明過程,能夠綜合運(yùn)用導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則求函數(shù)的導(dǎo)數(shù). 3.能運(yùn)用復(fù)合函數(shù)的求導(dǎo)法則進(jìn)行復(fù)合函數(shù)的求導(dǎo).,學(xué)習(xí)目標(biāo),欄目索引,知識梳理 自主學(xué)習(xí),題型探究 重點突破,當(dāng)堂檢測 自查自糾,知識梳理 自主學(xué)習(xí),知識點一 導(dǎo)數(shù)運(yùn)算法則,答案,f(x)g(x),f(x)g(x)f(x)g(x),答案,思考 (1)函數(shù)g(x)cf(x)(c為常數(shù))的導(dǎo)數(shù)是什么?,答案,答案 g(x)cf(x).,(2)若兩個函數(shù)可導(dǎo),則它們的和、差、積、商(商的情況下分母。
3、1.1.2 導(dǎo)數(shù)的概念,在高臺跳水運(yùn)動中,平均速度不一定能反映運(yùn)動員在某一時刻的運(yùn)動狀態(tài),需要用瞬時速度描述運(yùn)動狀態(tài)。我們把物體在某一時刻的速度稱為瞬時速度.,又如何求 瞬時速度呢?,平均變化率近似地刻畫了曲線在某一區(qū)間上的變化趨勢.,如何精確地刻畫曲線在一點處的變化趨勢呢?,求:從2s到(2+t)s這段時間內(nèi)平均速度,當(dāng)t = 0.01時,當(dāng)t = 0.01時,當(dāng)t = 0.001時,當(dāng)t =0.001時,當(dāng)t = 0.0001時,當(dāng)t =0.0001時,t = 0.00001,t = 0.00001,t = 0.000001,t =0.000001,平均變化率近似地刻畫了曲線在某一區(qū)間上的變化趨勢.,如何精確地刻畫曲線在一。
4、1.1.3導(dǎo)數(shù)的幾何意義,先來復(fù)習(xí)導(dǎo)數(shù)的概念,定義:設(shè)函數(shù)y=f(x)在點x0處及其附近有定義,當(dāng)自變量x在點x0處有改變量x時函數(shù)有相應(yīng)的改變量y=f(x0+ x)- f(x0).如果當(dāng)x0 時,y/x的極限存在,這個極限就叫做函數(shù)f(x)在點x0處的導(dǎo)數(shù)(或變化率)記作 即:,下面來看導(dǎo)數(shù)的幾何意義:,如圖,曲線C是函數(shù)y=f(x) 的圖象,P(x0,y0)是曲線C上的 任意一點,Q(x0+x,y0+y) 為P鄰近一點,PQ為C的割線, PM/x軸,QM/y軸,為PQ的 傾斜角.,斜率!,P,Q,割線,切線,T,請看當(dāng)點Q沿著曲線逐漸向點P接近時,割線PQ繞著點P逐漸轉(zhuǎn)動的情況.,我們發(fā)現(xiàn),當(dāng)點Q沿著曲線無限接近點P即x0時,。
5、1.3.2函數(shù)的極值與導(dǎo)數(shù),a,b,x,y,O,定義,一般地, 設(shè)函數(shù) f (x) 在點x0附近有定義, 如果對x0附近的所有的點, 都有,我們就說 f (x0)是 f (x) 的一個極大值, 點x0叫做函數(shù) y = f (x)的極大值點.,反之, 若 , 則稱 f (x0) 是 f (x) 的一個極小值, 點x0叫做函數(shù) y = f (x)的極小值點.,極小值點、極大值點統(tǒng)稱為極值點, 極大值和極小值統(tǒng)稱為極值.,觀察上述圖象,試指出該函數(shù)的極值點與極值,并說出哪些是極大值點,哪些是極小值點.,(1)函數(shù)的極值是就函數(shù)在某一點附近的小區(qū)間而言的,在函數(shù)的整個定義區(qū)間內(nèi)可能有多個極大值或極小值,(2)極大。
6、函數(shù)的最值與導(dǎo)數(shù),1、導(dǎo)數(shù)與單調(diào)性的關(guān)系,復(fù)習(xí),左正右負(fù)極大,左負(fù)右正極小,左右同號無極值,(2) 由負(fù)變正,那么 是極小值點;,(3) 不變號,那么 不是極值點。,(1) 由正變負(fù),那么 是極大值點;,2.極值的判定,(1) 求導(dǎo)函數(shù)f(x); (2) 求解方程f(x)=0; (3) 檢查f(x)在方程f(x)=0的根的左右的符號,并根據(jù)符號確定極大值與極小值.,口訣:左負(fù)右正為極小,左正右負(fù)為極大.,用導(dǎo)數(shù)法求解函數(shù)極值的步驟:,復(fù)習(xí),求函數(shù)最值,1)在某些問題中,往往關(guān)心的是函數(shù)在整個定義域區(qū)間上,哪個值最大或最小的問題這就是我們通常所說的最值問題.,2)在閉區(qū)間a,b。
7、函數(shù)的最大值與最小值,一、復(fù)習(xí)與引入,1.當(dāng)函數(shù)f(x)在x0處連續(xù)時,判別f(x0)是極大(小)值的方 法是: 如果在x0附近的左側(cè) 右側(cè) ,那么,f(x0) 是極大值; 如果在x0附近的左側(cè) 右側(cè) ,那么,f(x0) 是極小值.,2.導(dǎo)數(shù)為零的點是該點為極值點的必要條件,而不是充 分條件.極值只能在函數(shù)不可導(dǎo)的點或?qū)?shù)為零的點 取到.,3.在某些問題中,往往關(guān)心的是函數(shù)在一個定義區(qū)間上, 哪個值最大,哪個值最小,而不是極值.,二、新課函數(shù)的最值,觀察右邊一個定義在區(qū)間a,b上的函數(shù)y=f(x)的圖象.,發(fā)現(xiàn)圖中____________是極小值,_________是極大值,在區(qū)間上的函數(shù)的。
8、2、求最大(最?。┲祽?yīng)用題的一般方法:,(1)分析實際問題中各量之間的關(guān)系,把實際問題化為數(shù)學(xué)問題,建立函數(shù)關(guān)系式,這是關(guān)鍵一步;,(2)確定函數(shù)定義域,并求出極值點;,(3)比較各極值與定義域端點函數(shù)的大小, 結(jié)合實際,確定最值或最值點.,1、實際應(yīng)用問題的表現(xiàn)形式,常常不是以純數(shù)學(xué)模式反映出來:,首先,通過審題,認(rèn)識問題的背景,抽象出問題的實質(zhì); 其次,建立相應(yīng)的數(shù)學(xué)模型, 將應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題,再解.,3.4生活中的優(yōu)化問題,解:設(shè)箱底邊長為x,則箱高h(yuǎn)=(60-x)/2.箱子容積 V(x)=x2h=(60x2-x3)/2(0x60).,令 ,解得x=0(舍去),x=40。
9、3.4 生活中的優(yōu)化問題舉例,生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題,通過前面的學(xué)習(xí),知道,導(dǎo)數(shù)是求函數(shù)最大(?。┲档挠辛ぞ撸竟?jié)我們運(yùn)用導(dǎo)數(shù),解決一些生活中的優(yōu)化問題。,問題1:海報版面尺寸的設(shè)計,學(xué)?;虬嗉壟e行活動,通常需要張貼海報進(jìn)行宣傳,現(xiàn)讓你設(shè)計一張如圖所示的豎向張貼的海報,要求版心面積為128dm2,上下邊各空2dm,左右空1dm,如何設(shè)計海報的尺寸,才能使四周空白面積最???,解:設(shè)版心的高為xdm,則寬為,此時四周空白面積為,學(xué)?;虬嗉壟e行活動,通常需要張貼海報進(jìn)行宣傳,。
10、牛頓-萊不尼茨公式(微積分基本公式),第三節(jié) 微積分基本公式,定 積 分,定理3:,牛頓-萊不尼茨公式(微積分基本公式),例1 計算下列定積分,例3,解:,o,x,y,依題意,所求面積為,y=sinx,定積分的元素法 定積分在幾何學(xué)上的應(yīng)用 定積分在物理學(xué)上的應(yīng)用,第七節(jié) 定積分應(yīng)用,二、 定積分在幾何學(xué)上的應(yīng)用,一、直角坐標(biāo)情形,定積分幾何應(yīng)用之一,平 面 圖 形 的 面 積,問題:,(i)取x為積分變量,則,(ii)相應(yīng)于a,b上任一小區(qū)間x,x+dx 的小窄條面積近似值,即面積元素,(iii)所求面積,(i)求交點,(ii)相應(yīng)于0,1上任一小區(qū)間x,x+dx的小窄條面積的近似。
11、高二數(shù)學(xué) 選修2-2,推 理 與 證 明,推理與證明,推理,證明,合情推理,演繹推理,直接證明,數(shù)學(xué)歸納法,間接證明,比較法,類比推理,歸納推理,分析法,綜合法,反證法,知識結(jié)構(gòu),例1,題型一 合情推理與演繹推理,B,小結(jié): 合情推理是根據(jù)已有的事實和正確的結(jié)論(包括定義、 公理、定理等)、實驗和實踐的結(jié)果,以及個人的經(jīng)驗和直覺等推測某些結(jié)果的推理過程,歸納和類比是合情推理常用的思維方法;歸納是由特殊到一般; 類比是由特殊到特殊 演繹推理是根據(jù)已有的事實和正確的結(jié)論,按照嚴(yán)格的邏輯法則得到的新結(jié)論的推理過程三段論是常用格式,例:,可歸。
12、1.3.1 函數(shù)的單調(diào)性與導(dǎo)數(shù),1.求過曲線y=x3-2x上的點(1,-1)的切線方程,求過某點的曲線的切線方程時,除了要判斷該點是否 在曲線上,還要分“該點是切點”和“該點不是切點”兩種 情況進(jìn)行討論,解法復(fù)制。若設(shè)M(x0,y0。
13、1.3.1 函數(shù)的單調(diào)性與導(dǎo)數(shù),第一章 1.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,1.結(jié)合實例,直觀探索并掌握函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系. 2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,并能夠利用單調(diào)性證明一些簡單的不等式. 3.會求函數(shù)的單調(diào)區(qū)間。
14、2.1.2 演繹推理,第二章 2.1 合情推理與演繹推理,1.了解演繹推理的重要性. 2.掌握演繹推理的基本模式,并能進(jìn)行一些簡單的推理. 3.了解合情推理和演繹推理之間的區(qū)別和聯(lián)系.,學(xué)習(xí)目標(biāo),欄目索引,知識梳理 自主。
15、1.1.1 變化率問題,問題1 氣球膨脹率,在吹氣球的過程中, 可發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加, 氣球的半徑增加得越來越慢. 從數(shù)學(xué)的角度, 如何描述這種現(xiàn)象呢?,氣球的體積V(單位:L)與半徑r (單位:dm)之間的函數(shù)關(guān)系是,若。
16、1.2.1幾種常見 函數(shù)的導(dǎo)數(shù),一、復(fù)習(xí),1.解析幾何中,過曲線某點的切線的斜率的精確描述與 求值;物理學(xué)中,物體運(yùn)動過程中,在某時刻的瞬時速 度的精確描述與求值等,都是極限思想得到本質(zhì)相同 的數(shù)學(xué)表達(dá)式,將它們抽象歸。
17、1.2.2基本初等函數(shù)的導(dǎo)數(shù)公式 及導(dǎo)數(shù)的運(yùn)算法則,我們今后可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式,導(dǎo)數(shù)的運(yùn)算法則:,法則1:兩個函數(shù)的和(差)的導(dǎo)數(shù),等于這兩個函數(shù)的導(dǎo)數(shù)的 和(差),即:,法則2:兩個函數(shù)的積的導(dǎo)數(shù),等。
18、2019-2020年高中數(shù)學(xué) 3.2.1復(fù)數(shù)的運(yùn)算-復(fù)數(shù)的加法與減法教案(1) 新人教版選修2-2 教學(xué)目標(biāo): 知識與技能:掌握復(fù)數(shù)的加法運(yùn)算及意義 過程與方法:理解并掌握實數(shù)進(jìn)行四則運(yùn)算的規(guī)律,了解復(fù)數(shù)加減法運(yùn)算的幾何。
19、1.1.1 變化率問題 1.1.2 導(dǎo)數(shù)的概念,第一章 1.1 變化率與導(dǎo)數(shù),1.理解函數(shù)平均變化率、瞬時變化率的概念. 2.掌握函數(shù)平均變化率的求法. 3.掌握導(dǎo)數(shù)的概念,會用導(dǎo)數(shù)的定義求簡單函數(shù)在某點處的導(dǎo)數(shù).,學(xué)習(xí)目標(biāo),欄目。
20、1.3.2 函數(shù)的極值與導(dǎo)數(shù),第一章 1.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,1.了解函數(shù)極值的概念,會從幾何方面直觀理解函數(shù)的極值與導(dǎo)數(shù)的關(guān)系,并會靈活應(yīng)用. 2.掌握函數(shù)極值的判定及求法. 3.掌握函數(shù)在某一點取得極值的條件。