購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
轎車轉(zhuǎn)向機構(gòu)設(shè)計
摘要
本課題的題目是轎車轉(zhuǎn)向系的設(shè)計。以齒輪齒條轉(zhuǎn)向器的設(shè)計為中心,一是轎車轉(zhuǎn)向系統(tǒng)總述;二是機械轉(zhuǎn)向器的選擇;三是齒輪和齒條的合理匹配,以滿足轉(zhuǎn)向器的正確傳動比和強度要求;四是轉(zhuǎn)向傳動機構(gòu)的設(shè)計;五是梯形結(jié)構(gòu)設(shè)計。本課題在考慮上述要求和因素的基礎(chǔ)上研究利用轉(zhuǎn)向盤的旋轉(zhuǎn)帶動傳動機構(gòu)的齒輪齒條轉(zhuǎn)向軸轉(zhuǎn)向,通過萬向節(jié)帶動轉(zhuǎn)向齒輪軸旋轉(zhuǎn),轉(zhuǎn)向齒輪軸與轉(zhuǎn)向齒條嚙合,從而促使轉(zhuǎn)向齒條直線運動,實現(xiàn)轉(zhuǎn)向。該轉(zhuǎn)向器具有結(jié)構(gòu)簡單緊湊,軸向尺寸短,且零件數(shù)目少的優(yōu)點,實現(xiàn)了汽車轉(zhuǎn)向的穩(wěn)定性和靈敏性。在本文中主要進行了轉(zhuǎn)向器齒輪齒條的設(shè)計和對轉(zhuǎn)向齒輪軸的校核,主要方法和理論采用汽車設(shè)計的經(jīng)驗參數(shù)和大學所學機械設(shè)計的課程內(nèi)容進行設(shè)計,其結(jié)果滿足強度要求,安全可靠。
關(guān)鍵詞:轎車 轉(zhuǎn)向系 齒輪齒條轉(zhuǎn)向器 轉(zhuǎn)向梯形
Abstract
The title of this topic is the design of the car steering mechanism. Rack and pinion steering gear to the design as the center, first are cars’ steering system overview; Second, Cars steering system performance parameters; third rack gear and a reasonable match to meet the correct steering gear ratio and strength requirements; Fourth, Steering transmission mechanism design; Fifth, the structural design of trapezoidal. Therefore, taking into account the above issues and factors that require study, based on the steering wheel rotary drive transmission shaft of the steering rack and pinion steering, through the universal joint drive shaft rotation gear shift, steering rack and steering gear shaft meshing, thereby encouraging steering rack linear motion to achieve steering. Simple structure to achieve the steering tight, short axial dimension, and the number of parts can increase the advantages in order to achieve the vehicle steering stability and sensitivity. In this article a major design steering rack and pinion steering gear shaft and the check, the main methods and theoretical experience in the use of automotive design parameters and the University of mechanical design school curriculum design and the results meet the strength requirements, safe and reliable.
Keywords: Car Steering system Rack-and pinion steering gear Steering Trapezoidal
目錄
摘要 I
Abstract II
前言 1
1 轉(zhuǎn)向系統(tǒng) 5
1.1轉(zhuǎn)向系統(tǒng)概述 5
1.2轉(zhuǎn)向操縱機構(gòu) 7
1.3轉(zhuǎn)向傳動機構(gòu) 9
1.4轉(zhuǎn)向器與轉(zhuǎn)向器形式 10
1.5動力轉(zhuǎn)向機構(gòu) 11
1.6齒輪齒條式轉(zhuǎn)向器的優(yōu)點 11
2 機械型轉(zhuǎn)向器原理 12
2.1齒輪齒條式轉(zhuǎn)向器的分類 12
2.2轉(zhuǎn)向系主要性能參數(shù) 14
2.2.1轉(zhuǎn)向器的效率 14
2.2.2傳動比的變化特性 16
3 齒輪齒條的設(shè)計步驟 19
3.1齒輪齒條的設(shè)計 19
3.2 強度校核 23
3.3齒輪齒條設(shè)計程序框圖 25
4 轉(zhuǎn)向器齒輪軸設(shè)計及其校核 26
4.1確定使用材料 26
4.2 軸的結(jié)構(gòu)的設(shè)計及校核 26
4.3軸承選擇和確定 30
5 轉(zhuǎn)向傳動機構(gòu)設(shè)計 31
5.1 轉(zhuǎn)向傳動機構(gòu)原理 31
5.2 轉(zhuǎn)向傳動機構(gòu)的臂、桿與球銷 33
5.3 轉(zhuǎn)向橫拉桿及其端部 34
6 轉(zhuǎn)向梯形機構(gòu)優(yōu)化 37
6.1 轉(zhuǎn)向梯形機構(gòu)概述 37
6.2 整體式轉(zhuǎn)向梯形結(jié)構(gòu)方案分析 37
6.3 整體式轉(zhuǎn)向梯形機構(gòu)優(yōu)化分析 38
6.4 整體式轉(zhuǎn)向梯形機構(gòu)優(yōu)化設(shè)計 42
總結(jié) 46
致 謝 47
參考文獻 48
前言
改革開放以來,我國汽車工業(yè)發(fā)展迅猛。作為汽車關(guān)鍵部件之一的轉(zhuǎn)向系統(tǒng)也得到了相應(yīng)的發(fā)展,基本已形成了專業(yè)化、系列化生產(chǎn)的局面。有資料顯示,國外有很多國家的轉(zhuǎn)向器廠,都已發(fā)展成大規(guī)模生產(chǎn)的專業(yè)廠,年產(chǎn)超過百萬臺,壟斷了轉(zhuǎn)向器的生產(chǎn),并且銷售點遍布了全世界。
由于汽車轉(zhuǎn)向器屬于汽車系統(tǒng)中的關(guān)鍵部件,它在汽車系統(tǒng)中占有重要位置,因而它的發(fā)展同時也反映了汽車工業(yè)的發(fā)展,它的規(guī)模和質(zhì)量也成為了衡量汽車工業(yè)發(fā)展水平的重要標志之一。隨著汽車高速化和超低扁平胎的通用化,過去采用循環(huán)球轉(zhuǎn)向器和循環(huán)球變傳動比轉(zhuǎn)向器只能相對地解決轉(zhuǎn)向輕便性和操縱靈便性的問題,要想從跟本上解決這兩個問題只有安裝動力轉(zhuǎn)向器。因此,除了重型汽車和高檔轎車早已安裝動力轉(zhuǎn)向器外,近年來在中型貨車、豪華客車及中檔轎車上都已經(jīng)開始安裝動力轉(zhuǎn)向器,隨著動力轉(zhuǎn)向器的設(shè)計水平的提高、生產(chǎn)規(guī)模的擴大和市場的需要,其他的一些車型也必須陸續(xù)安裝動力轉(zhuǎn)向器。液壓助力型轉(zhuǎn)向器的設(shè)計使汽車在低速行駛或車輛就位時,駕駛員只需用較小的操作力就能靈活進行轉(zhuǎn)向;而在高速行駛時,則自動控制,使操作力逐漸增大,實現(xiàn)了穩(wěn)定操縱。雖然這種轉(zhuǎn)向器具有很多優(yōu)點,但在目前的技術(shù)水準下它仍然存在某些不足之處,例如助力較小等;因此,目前機械式轉(zhuǎn)向器仍然占據(jù)著很大的市場份額,其性能也在不斷地提高,同時這對于液壓助力型動力轉(zhuǎn)向器的研究也有著非常深遠的意義。因此本課題在考慮上述要求和因素的基礎(chǔ)上研究利用轉(zhuǎn)向盤的旋轉(zhuǎn)帶動傳動機構(gòu)的轉(zhuǎn)向軸轉(zhuǎn)向,通過萬向節(jié)帶動齒輪軸旋轉(zhuǎn),齒輪軸與齒條嚙合,從而促使齒條直線運動,實現(xiàn)轉(zhuǎn)向。實現(xiàn)了轉(zhuǎn)向器結(jié)構(gòu)簡單緊湊,軸向尺寸短,且零件數(shù)目少的優(yōu)點,實現(xiàn)了汽車轉(zhuǎn)向的穩(wěn)定性和靈敏性。
從操縱輕便性、穩(wěn)定性及安全行駛的角度,汽車制造廣泛使用更先進的工藝方法,使用變速比轉(zhuǎn)向器、高剛性轉(zhuǎn)向器。“變速比和高剛性”是目前世界上生產(chǎn)的轉(zhuǎn)向器結(jié)構(gòu)的方向。隨著汽車車速的提高,駕駛員和乘客的安全非常重要,目前國內(nèi)外在許多汽車上已普遍增設(shè)能量吸收裝置,如防碰撞安全轉(zhuǎn)向柱、安全帶、安全氣囊等,并逐步推廣。從人類工程學的角度考慮操縱的輕便性,已逐步采用可調(diào)整的轉(zhuǎn)向管柱和動力轉(zhuǎn)向系統(tǒng)。隨著國際經(jīng)濟形勢的惡化,石油危機造成經(jīng)濟衰退,汽車生產(chǎn)愈來愈重視經(jīng)濟性,因此,要設(shè)計低成本、低油耗的汽車和低成本、合理化生產(chǎn)線,盡量實現(xiàn)大批量專業(yè)化生產(chǎn)。對零部件生產(chǎn),特別是轉(zhuǎn)向器的生產(chǎn),更表現(xiàn)突出。
隨著汽車工業(yè)的迅速發(fā)展,轉(zhuǎn)向裝置的結(jié)構(gòu)也有很大變化。汽車轉(zhuǎn)向器的結(jié)構(gòu)很多,從目前使用的普遍程度來看,主要的轉(zhuǎn)向器類型有4種:有曲柄指銷式(WP型)、蝸桿滾輪式(WR型)、循環(huán)球式(BS型)、齒輪齒條式(RP型)。這四種轉(zhuǎn)向器型式,已經(jīng)被廣泛使用在汽車上。據(jù)了解,在世界范圍內(nèi),循環(huán)球式轉(zhuǎn)向器占45%左右,齒輪齒條式轉(zhuǎn)向器占40%左右,蝸桿滾輪式轉(zhuǎn)向器占10%左右,其它型式的轉(zhuǎn)向器占5%。循環(huán)球式轉(zhuǎn)向器一直在穩(wěn)步發(fā)展。在西歐小客車中,齒條齒輪式轉(zhuǎn)向器有很大的發(fā)展。日本汽車轉(zhuǎn)向器的特點是循環(huán)球式轉(zhuǎn)向器占的比重越來越大,日本裝備不同類型發(fā)動機的各類型汽車,采用不同類型轉(zhuǎn)向器,在公共汽車中使用的循環(huán)球式轉(zhuǎn)向器,已由60年代的62.5%,發(fā)展到現(xiàn)今的100%了(蝸桿滾輪式轉(zhuǎn)向器在公共汽車上已經(jīng)被淘汰)。大、小型貨車大都采用循環(huán)球式轉(zhuǎn)向器,但齒條齒輪式轉(zhuǎn)向器也有所發(fā)展。微型貨車用循環(huán)球式轉(zhuǎn)向器占65%,齒條齒輪式占 35%。
綜合上述對有關(guān)轉(zhuǎn)向器品種的使用分析,得出以下結(jié)論:
循環(huán)球式轉(zhuǎn)向器和齒輪齒條式轉(zhuǎn)向器,已成為當今世界汽車上主要的兩種轉(zhuǎn)向器;而蝸桿滾輪式轉(zhuǎn)向器和曲柄指銷式轉(zhuǎn)向器,正在逐步被淘汰或保留較小的地位。
在小客車上發(fā)展轉(zhuǎn)向器的觀點各異,美國和日本重點發(fā)展循環(huán)球式轉(zhuǎn)向器,比率都已達到或超過90%;西歐則重點發(fā)展齒輪齒條式轉(zhuǎn)向器,比率超過50%,法國已高達95%。
由于齒輪齒條式轉(zhuǎn)向器的種種優(yōu)點,在小型車上的應(yīng)用(包括小客車、小型貨車或客貨兩用車)得到突飛猛進的發(fā)展;而大型車輛則以循環(huán)球式轉(zhuǎn)向器為主要結(jié)構(gòu)。
循環(huán)球式轉(zhuǎn)向器的特點是:效率高,操縱輕便,有一條平滑的操縱力特性曲線。
布置方便。特別適合大、中型車輛和動力轉(zhuǎn)向系統(tǒng)配合使用;易于傳遞駕駛員操縱信號;逆效率高、回位好,與液壓助力裝置的動作配合得好。可以實現(xiàn)變速比的特性,滿足了操縱輕便性的要求。中間位置轉(zhuǎn)向力小、且經(jīng)常使用,要求轉(zhuǎn)向靈敏,因此希望中間位置附近速比小,以提高靈敏性。大角度轉(zhuǎn)向位置轉(zhuǎn)向阻力大,但使用次數(shù)少,因此希望大角度位置速比大一些,以減小轉(zhuǎn)向力。由于循環(huán)球式轉(zhuǎn)向器可實現(xiàn)變速比,應(yīng)用正日益廣泛。通過大量鋼球的滾動接觸來傳遞轉(zhuǎn)向力,具有較大的強度和較好的耐磨性。并且該轉(zhuǎn)向器可以被設(shè)計成具有等強度結(jié)構(gòu),這也是它應(yīng)用廣泛的原因之一。變速比結(jié)構(gòu)具有較高的剛度,特別適宜高速車輛車速的提高。高速車輛需要在高速時有較好的轉(zhuǎn)向穩(wěn)定性,必須保證轉(zhuǎn)向器具有較高的剛度,間隙可調(diào)。齒條齒扇副磨損后可以重新調(diào)整間隙,使之具有合適的轉(zhuǎn)向器傳動間隙,從而提高轉(zhuǎn)向器壽命,也是這種轉(zhuǎn)向器的優(yōu)點之一。
我國的轉(zhuǎn)向器生產(chǎn),除早期投產(chǎn)的解放牌汽車用蝸桿滾輪式轉(zhuǎn)向器,東風汽車用曲柄指銷式轉(zhuǎn)向器之外,其它大部分車型都采用循環(huán)球式結(jié)構(gòu),并都具有一定的生產(chǎn)經(jīng)驗。目前解放、東風也都在積極發(fā)展循環(huán)球式轉(zhuǎn)向器,并已在第二代換型車上普遍采用了循環(huán)球式轉(zhuǎn)向器。由此看出,我國的轉(zhuǎn)向器也在向大量生產(chǎn)循環(huán)球式轉(zhuǎn)向器發(fā)展。循環(huán)球式轉(zhuǎn)向器在國外實現(xiàn)了專業(yè)化生產(chǎn),同時以專業(yè)廠為主、大力進行試驗和研究,大大提高了產(chǎn)品的產(chǎn)量和質(zhì)量。日本“精工”(NSK)公司的循環(huán)球式轉(zhuǎn)向器就以成本低、質(zhì)量好、產(chǎn)量大,逐步占領(lǐng)日本市場,并向全世界銷售它的產(chǎn)品。德國ZF公司也作為一個大型轉(zhuǎn)向器專業(yè)廠著稱于世。它從1948年開始生產(chǎn)ZF型轉(zhuǎn)向器,年產(chǎn)各種轉(zhuǎn)向器200多萬臺。還有一些比較大的轉(zhuǎn)向器生產(chǎn)廠,如美國德爾福公司SAGINAW分部;英國BURMAN公司都是比較有名的專業(yè)廠家,都有很大的產(chǎn)量和銷售面。專業(yè)化生產(chǎn)已成為一種趨勢,只有走這條道路,才能使產(chǎn)品質(zhì)量高、產(chǎn)量大、成本低,在市場上有競爭力。
動力轉(zhuǎn)向系統(tǒng)的應(yīng)用日益廣泛,不僅在重型汽車上必須裝備,在高級轎車上應(yīng)用的也較多,在中型汽車上的應(yīng)用也逐漸推廣。主要是從減輕駕駛員疲勞,提高操縱輕便性和穩(wěn)定性出發(fā)。雖然帶來成本較高和結(jié)構(gòu)復(fù)雜等問題,但由于優(yōu)點明顯,還是得到很快的發(fā)展。
1 轉(zhuǎn)向系統(tǒng)
1.1轉(zhuǎn)向系統(tǒng)概述
汽車行駛過程中,經(jīng)常需要改變行駛方向,即所謂的轉(zhuǎn)向,這就需要有一套能夠按照司機意志使汽車轉(zhuǎn)向的機構(gòu),它將司機轉(zhuǎn)動方向盤的動作轉(zhuǎn)變?yōu)檐囕?通常是前輪)的偏轉(zhuǎn)動作。按轉(zhuǎn)向力能源的不同,可將轉(zhuǎn)向系分為機械轉(zhuǎn)向系和動力轉(zhuǎn)向系。
機械轉(zhuǎn)向系的能量來源是人力,所有傳力件都是機械的,由轉(zhuǎn)向操縱機構(gòu)(方向盤)、轉(zhuǎn)向器、轉(zhuǎn)向傳動機構(gòu)三大部分組成。其中轉(zhuǎn)向器是將操縱機構(gòu)的旋轉(zhuǎn)運動轉(zhuǎn)變?yōu)閭鲃訖C構(gòu)的直線運動(嚴格講是近似直線運動)的機構(gòu),是轉(zhuǎn)向系的核心部件[2]。
動力轉(zhuǎn)向系除具有以上三大部件外,其最主要的動力來源是轉(zhuǎn)向助力裝置。由于轉(zhuǎn)向助力裝置最常用的是一套液壓系統(tǒng),因此也就離不開泵、油管、閥、活塞和儲油罐,它們分別相當于電路系統(tǒng)中的電池、導線、開關(guān)、電機和地線的作用。
通常,對轉(zhuǎn)向系的主要要求是:
1、轎車轉(zhuǎn)彎行駛時,全部車輪應(yīng)繞瞬時轉(zhuǎn)向中心旋轉(zhuǎn),任何車輪不應(yīng)有側(cè)滑。不滿足這項要求會加速輪胎磨損,并降低汽車的行駛穩(wěn)定性。
2、轎車轉(zhuǎn)向行駛時,在駕駛員松開轉(zhuǎn)向盤的條件下,轉(zhuǎn)向輪能自動返回到直線行駛位置,并穩(wěn)定行駛。
3、轎車在任何行駛狀態(tài)下,轉(zhuǎn)向輪都不得產(chǎn)生自振,轉(zhuǎn)向盤沒有擺動。
4、轉(zhuǎn)向傳動機構(gòu)和懸架導向裝置共同工作時,由于運動不協(xié)調(diào)使車輪產(chǎn)生的擺動應(yīng)最小。
5、保證轎車有較高的機動性,具有迅速和小轉(zhuǎn)彎行駛能力。
6、操縱輕便。
7、轉(zhuǎn)向輪碰撞到障礙物以后,傳給轉(zhuǎn)向盤的反沖力要盡可能小。
8、轉(zhuǎn)向器和轉(zhuǎn)向傳動機構(gòu)的球頭處,有消除因磨損而產(chǎn)生間隙的調(diào)整機構(gòu)。
9、在車禍中,當轉(zhuǎn)向軸和轉(zhuǎn)向盤由于車架或車身變形而共同后移時,轉(zhuǎn)向系應(yīng)有能使駕駛員免遭或減輕傷害的防傷裝置。
10、進行運動校核,保證轉(zhuǎn)向輪與轉(zhuǎn)向盤轉(zhuǎn)動方向一致。
正確設(shè)計轉(zhuǎn)向梯形機構(gòu),可以使第一項要求得到保證。轉(zhuǎn)向系中設(shè)置有轉(zhuǎn)向減振器時,能夠防止轉(zhuǎn)向輪產(chǎn)生自振,同時又能使傳到轉(zhuǎn)向盤上的反沖力明顯降低。為了使轎車車具有良好的機動性能,必須使轉(zhuǎn)向輪有盡可能大的轉(zhuǎn)角,并要達到按前外輪車輪軌跡計算,其最小轉(zhuǎn)彎半徑能達到轎車車軸距的2~2.5倍。通常用轉(zhuǎn)向時駕駛員作用在轉(zhuǎn)向盤上的切向力大小和轉(zhuǎn)向盤轉(zhuǎn)動圈數(shù)多少兩項指標來評價操縱輕便性。沒有裝置動力轉(zhuǎn)向的轎車,在行駛中轉(zhuǎn)向,此力應(yīng)為50~100N;有動力轉(zhuǎn)向時,此力在20~50N。轎車轉(zhuǎn)向盤從中間位置轉(zhuǎn)到每一端的圈數(shù)不得超過2.0圈。
下圖是一種機械式轉(zhuǎn)向系統(tǒng)如圖1-1示。駕駛員對轉(zhuǎn)向盤1施加的轉(zhuǎn)向力矩通過轉(zhuǎn)向軸2輸入轉(zhuǎn)向器8。從轉(zhuǎn)向盤到轉(zhuǎn)向傳動軸這一系列零件即屬于轉(zhuǎn)向操縱機構(gòu)。作為減速傳動裝置的轉(zhuǎn)向器中有1、2級減速傳動副(右圖所示轉(zhuǎn)向系統(tǒng)中的轉(zhuǎn)向器為單級減速傳動副)。經(jīng)轉(zhuǎn)向器放大后的力矩和減速后的運動傳到轉(zhuǎn)向橫拉桿6,再傳給固定于轉(zhuǎn)向節(jié)3上的轉(zhuǎn)向節(jié)臂5,使轉(zhuǎn)向節(jié)和它所支承的轉(zhuǎn)向輪偏轉(zhuǎn),從而改變了汽車的行駛方向。這里,轉(zhuǎn)向橫拉桿和轉(zhuǎn)向節(jié)臂屬于轉(zhuǎn)向傳動機構(gòu)。
l.轉(zhuǎn)向盤 2.轉(zhuǎn)向軸 3.轉(zhuǎn)向節(jié) 4.轉(zhuǎn)向輪 5.轉(zhuǎn)向節(jié)臂 6.轉(zhuǎn)向橫拉桿 7.轉(zhuǎn)向減振器 8.機械轉(zhuǎn)向器
圖1-1 機 械 系 統(tǒng) 簡 圖
1.2轉(zhuǎn)向操縱機構(gòu)
轉(zhuǎn)向盤即通常所說的方向盤。轉(zhuǎn)向盤內(nèi)部有金屬制成的骨架,是用鋼、鋁合金或鎂合金等材料制成。由圓環(huán)狀的盤圈、插入轉(zhuǎn)向軸的轉(zhuǎn)向盤轂,以及連接盤圈和盤轂的輻條構(gòu)成。采用焊接或鑄造等工藝制造,轉(zhuǎn)向軸是由細齒花鍵和螺母連接的。骨架的外側(cè)一般包有柔軟的合成橡膠或樹脂,也有采用皮革包裹以及硬木制作的轉(zhuǎn)向盤。轉(zhuǎn)向盤外皮要求有某種程度的柔軟度,手感良好,能防止手心出汗打滑的材質(zhì),還需要有耐熱、耐候性。
轉(zhuǎn)向盤的功能:轉(zhuǎn)向盤位于司機的正前方,是碰撞時最可能傷害到司機的部件,因此需要轉(zhuǎn)向盤具有很高的安全性,在司機撞在轉(zhuǎn)向盤上時,骨架能夠產(chǎn)生變形,吸收沖擊能,減輕對司機的傷害。轉(zhuǎn)向盤的慣性力矩也是很重要的,慣性力矩小,我們就會感到“輪輕”,操做感良好,但同時也容易受到轉(zhuǎn)向盤的反彈(即“打手”)的影響,為了設(shè)定適當?shù)膽T性力矩,就要調(diào)整骨架的材料或形狀等。
現(xiàn)在有越來越多的汽車在轉(zhuǎn)向盤里安裝了安全氣囊,也使汽車的安全性大大提高了。轉(zhuǎn)向盤的集電環(huán):轉(zhuǎn)向盤上有喇叭開關(guān),必須時刻與車身電器線路相連,而旋轉(zhuǎn)的轉(zhuǎn)向盤與組合開關(guān)之間顯然不能用導線直接相連,因此就必須采用集電環(huán)裝置。集電環(huán)好比環(huán)形的地鐵軌道,喇叭開關(guān)的觸點就象奔跑在軌道上的電車,時刻保持接通的狀態(tài)。由于是機械接觸,長時間使用觸點會因磨損影響導電性,導致緊急時刻喇叭不鳴甚至氣囊不工作。因此,最近裝備氣囊的汽車開始裝用電纜盤,代替集電環(huán)。
轉(zhuǎn)向盤的端子與組合開關(guān)的端子用電纜線連接,電纜盤將電線卷入盤內(nèi),類似于吸塵器的電線卷取機構(gòu),在轉(zhuǎn)向盤旋轉(zhuǎn)范圍內(nèi),電線*卷筒自由伸縮。這種裝置大大提高了電器裝置的可靠性。
如圖:圖1-2和圖1-3所示。
1.輪圈 2.輪輻 3.輪轂
圖1-2轉(zhuǎn)向盤簡圖
圖1-3 操縱機構(gòu)簡圖
轉(zhuǎn)向操縱機構(gòu)由方向盤、轉(zhuǎn)向軸、轉(zhuǎn)向管柱等組成,它的作用是將駕駛員轉(zhuǎn)動轉(zhuǎn)向盤的操縱力傳給轉(zhuǎn)向器。
1.3轉(zhuǎn)向傳動機構(gòu)
為牢固支承轉(zhuǎn)向盤而設(shè)有轉(zhuǎn)向柱。傳遞轉(zhuǎn)向盤操作的轉(zhuǎn)向軸從中穿過,由軸承和襯套支承。轉(zhuǎn)向柱本體安裝在車身上。轉(zhuǎn)向機構(gòu)應(yīng)備有吸收汽車碰撞時產(chǎn)生的沖擊能的裝置。許多國家都規(guī)定轎車義務(wù)安裝吸能式轉(zhuǎn)向柱。吸能裝置的方式很多,大都通過轉(zhuǎn)向柱的支架變形來達到緩沖吸能的作用。
轉(zhuǎn)向軸與轉(zhuǎn)向器齒輪箱之間采用連軸節(jié)相連(即兩個萬向節(jié)),之所以用連軸節(jié),除了可以改變轉(zhuǎn)向軸的方向,還有就是使得轉(zhuǎn)向軸可以作縱向的伸縮運動,以配合轉(zhuǎn)向柱的緩沖運動。
可傾斜式轉(zhuǎn)向機構(gòu):正是由于有了連軸節(jié),轉(zhuǎn)向軸可以有不同的傾斜角度,使轉(zhuǎn)向盤的位置可以上下傾斜,適應(yīng)各種身高和體形的司機。通過操作位于轉(zhuǎn)向柱下側(cè)的手柄,使轉(zhuǎn)向柱處于放松狀態(tài),將轉(zhuǎn)向盤調(diào)至自己喜好的位置,再反向轉(zhuǎn)動手柄,使轉(zhuǎn)向柱固定在新的位置上。
現(xiàn)在的一些高級轎車上已經(jīng)采用電動式轉(zhuǎn)向盤傾斜調(diào)整機構(gòu)。轉(zhuǎn)向軸內(nèi)裝有專用電機,使轉(zhuǎn)向軸改變傾斜角度。最新型的調(diào)整機構(gòu)是全自動式由計算機控制的??缮炜s式轉(zhuǎn)向機構(gòu):該機構(gòu)可象望遠鏡那樣伸縮調(diào)整轉(zhuǎn)向盤的前后位置。轉(zhuǎn)向軸也象望遠鏡一樣有雙重結(jié)構(gòu),內(nèi)筒與外筒用花鍵嚙合,使它們無法相對轉(zhuǎn)動,而只能沿鍵槽方向做伸縮運動。與傾斜調(diào)整機構(gòu)相同,可操作手柄解除或固定伸縮動作,一部分車也采用電動式計算機控制的全自動伸縮式轉(zhuǎn)向機構(gòu)。
1.4轉(zhuǎn)向器與轉(zhuǎn)向器形式
轉(zhuǎn)向器(也常稱為轉(zhuǎn)向機)是完成由旋轉(zhuǎn)運動到直線運動(或近似直線運動)的一組齒輪機構(gòu),同時也是轉(zhuǎn)向系中的減速傳動裝置。歷史上曾出現(xiàn)過許多種形式的轉(zhuǎn)向器,目前較常用的有齒輪齒條式、曲柄指銷式、循環(huán)球-齒條齒扇式、循環(huán)球曲柄指銷式、蝸桿滾輪式等。其中第二、第四種分別是第一、第三種的變形形式,而蝸桿滾輪式則更少見。我們只介紹目前最常用,最有代表性的兩種形:齒輪齒條式和循環(huán)球式。
齒輪齒條式:齒輪齒條方式的最大特點是剛性大,結(jié)構(gòu)緊湊重量輕,且成本低。由于這種方式容易由車輪將反作用力傳至轉(zhuǎn)向盤,所以具有對路面狀態(tài)反應(yīng)靈敏的優(yōu)點,但同時也容易產(chǎn)生打手和擺振等現(xiàn)象。齒輪與齒條直接嚙合,將齒輪的旋轉(zhuǎn)運動轉(zhuǎn)化為齒條的直線運動,使轉(zhuǎn)向拉桿橫向拉動車輪產(chǎn)生偏轉(zhuǎn)。齒輪并非單純的平齒輪,而是特殊的螺旋形狀,這是為了盡量減小齒輪與齒條之間的嚙合間隙,使轉(zhuǎn)向盤的微小轉(zhuǎn)動能夠傳遞到車輪,提高操作的靈敏性,也就是我們通常所說的減小方向盤的曠量。不過齒輪嚙合過緊也并非好事,它使得轉(zhuǎn)動轉(zhuǎn)向盤時的操作力過大,人會感到吃力。
循環(huán)球式:這種轉(zhuǎn)向裝置是由齒輪機構(gòu)將來自轉(zhuǎn)向盤的旋轉(zhuǎn)力進行減速,使轉(zhuǎn)向盤的旋轉(zhuǎn)運動變?yōu)闇u輪蝸桿的旋轉(zhuǎn)運動,滾珠螺桿和螺母夾著鋼球嚙合,因而滾珠螺桿的旋轉(zhuǎn)運動變?yōu)橹本€運動,螺母再與扇形齒輪嚙合,直線運動再次變?yōu)樾D(zhuǎn)運動,使連桿臂搖動,連桿臂再使連動拉桿和橫拉桿做直線運動,改變車輪的方向。
1.5動力轉(zhuǎn)向機構(gòu)
動力轉(zhuǎn)向機是利用外部動力協(xié)助司機輕便操作轉(zhuǎn)向盤的裝置。隨著最近汽車發(fā)動機馬力的增大和扁平輪胎的普遍使用,使車重和轉(zhuǎn)向阻力都加大了,因此動力轉(zhuǎn)向機構(gòu)越來越普及。值得注意的是,轉(zhuǎn)向助力不應(yīng)是不變的,因為在高速行駛時,輪胎的橫向阻力小,轉(zhuǎn)向盤變得輕飄,很難捕捉路面的感覺,也容易造成轉(zhuǎn)向過于靈敏而使汽車不易控制。所以在高速時要適當減低動力,但這種變化必須平順過度。
(一)液壓式動力轉(zhuǎn)向裝置
液壓式動力轉(zhuǎn)向裝置重量輕,結(jié)構(gòu)緊湊,利于改善轉(zhuǎn)向操作感覺,但液體流量的增加會加重泵的負荷,需要保持怠速旋轉(zhuǎn)的機構(gòu)。
(二)電動式動力轉(zhuǎn)向裝置
電動式動力轉(zhuǎn)向裝置是最新形式的轉(zhuǎn)向裝置,由于它節(jié)能,故受到人們的重視。它是利用蓄電池轉(zhuǎn)動電機產(chǎn)生推力。由于不直接使用發(fā)動機的動力,所以大大降低了發(fā)動機的功率損失(液壓式最大損失5-10馬力),且不需要液壓管路,便于安裝。尤其有利于中置發(fā)動機后輪驅(qū)動的汽車。但目前電動式動力轉(zhuǎn)向裝置所得動力還比不上液壓式,所以只限用于前輪軸輕的中置發(fā)動機后驅(qū)動的汽車上。
1.6齒輪齒條式轉(zhuǎn)向器的優(yōu)點
(1)構(gòu)造筒單,結(jié)構(gòu)輕巧。由于齒輪箱小,齒條本身具有傳動桿系的作用,因此,它不需要循環(huán)球式轉(zhuǎn)向器上所使用的拉桿
(2)因齒輪和齒條直接嚙合,操縱靈敏性非常高。
(3)滑動和轉(zhuǎn)動阻力小,轉(zhuǎn)矩傳遞性能較好,因此,轉(zhuǎn)向力非常輕。
(4)轉(zhuǎn)向機構(gòu)總成完全封閉,可免于維護。
(5)占用空間小,使用壽命長。
2 機械型轉(zhuǎn)向器原理
2.1齒輪齒條式轉(zhuǎn)向器的分類
1. 轉(zhuǎn)向橫拉桿 2.防塵套 3.球頭座 4.轉(zhuǎn)向齒條 5.轉(zhuǎn)向器殼體 6.調(diào)整螺塞 7.壓緊彈簧 8.鎖緊螺母 9.壓塊 10.萬向節(jié) 11.轉(zhuǎn)向齒輪軸 12.深溝球軸承 13.滾針軸承
圖2-1 兩端式齒輪齒條轉(zhuǎn)向器
齒輪齒條式轉(zhuǎn)向器: 齒輪齒條式轉(zhuǎn)向器分兩端輸出式和中間(或單端)輸出式兩種。
(一)兩端輸出的齒輪齒條式轉(zhuǎn)向器,作為傳動副主動件的轉(zhuǎn)向齒輪軸通過軸承安裝在轉(zhuǎn)向器殼體中,其上端通過花鍵與萬向節(jié)和轉(zhuǎn)向軸連接。與轉(zhuǎn)向齒輪嚙合的轉(zhuǎn)向齒條水平布置,兩端通過球頭座與轉(zhuǎn)向橫拉桿相連。彈簧通過壓塊將齒條壓在齒輪上,保證無間隙嚙合。 彈簧的預(yù)緊力可用調(diào)整螺栓調(diào)整。當轉(zhuǎn)動轉(zhuǎn)向盤時,轉(zhuǎn)向器齒輪轉(zhuǎn)動,使與之嚙合的齒條沿軸向移動,從而使左右橫拉桿帶動轉(zhuǎn)向節(jié)左右轉(zhuǎn)動,使轉(zhuǎn)向車輪偏轉(zhuǎn),從而實現(xiàn)汽車轉(zhuǎn)向。
兩端輸出的齒輪齒條式轉(zhuǎn)向器如圖2-1所示,作為傳動副主動件的轉(zhuǎn)向齒輪軸11通過軸承12和13安裝在轉(zhuǎn)向器殼體5中,其上端通過花鍵與萬向節(jié)10和轉(zhuǎn)向軸連接。與轉(zhuǎn)向齒輪嚙合的轉(zhuǎn)向齒條4水平布置,兩端通過球頭座3與轉(zhuǎn)向橫拉桿1相連。彈簧7通過壓塊9將齒條壓在齒輪上,保證無間隙嚙合。彈簧的預(yù)緊力可用調(diào)整螺塞6調(diào)整。當轉(zhuǎn)動轉(zhuǎn)向盤時,轉(zhuǎn)向器齒輪11轉(zhuǎn)動,使與之嚙合的齒條4沿軸向移動,從而使左右橫拉桿帶動轉(zhuǎn)向節(jié)左右轉(zhuǎn)動,使轉(zhuǎn)向車輪偏轉(zhuǎn),從而實現(xiàn)汽車轉(zhuǎn)向。中間輸出的齒輪齒條式轉(zhuǎn)向器如圖2-2所示,其結(jié)構(gòu)及工作原理與兩端輸出的齒輪齒條式轉(zhuǎn)向器基本相同,不同之處在于它在轉(zhuǎn)向齒條的中部用螺栓6與左右轉(zhuǎn)向橫拉桿7相連。
(二)中間輸出的齒輪齒條式轉(zhuǎn)向器,其結(jié)構(gòu)及工作原理與兩端輸出的齒輪齒條式轉(zhuǎn)向器基本相同,不同之處在于它在轉(zhuǎn)向齒條的中部用螺栓與左右轉(zhuǎn)向橫拉桿相連。在單端輸出的齒輪齒條式轉(zhuǎn)向器上,齒條的一端通過內(nèi)外托架與轉(zhuǎn)向橫拉桿相連。循環(huán)球式轉(zhuǎn)向器 循環(huán)球式轉(zhuǎn)向器是目前國內(nèi)外應(yīng)用最廣泛的結(jié)構(gòu)型式之一, 一般有兩級傳動副,第一級是螺桿螺母傳動副,第二級是齒條齒扇傳動副。
為了減少轉(zhuǎn)向螺桿轉(zhuǎn)向螺母之間的摩擦,二者的螺紋并不直接接觸,其間裝有多個鋼球,以實現(xiàn)滾動摩擦。轉(zhuǎn)向螺桿和螺母上都加工出斷面輪廓為兩段或三段不同心圓弧組成的近似半圓的螺旋槽。二者的螺旋槽能配合形成近似圓形斷面的螺旋管狀通道。螺母側(cè)面有兩對通孔,可將鋼球從此孔塞入螺旋形通道內(nèi)。轉(zhuǎn)向螺母外有兩根鋼球?qū)Ч?,每根導管的兩端分別插入螺母側(cè)面的一對通孔中。導管內(nèi)也裝滿了鋼球。這樣,兩根導管和螺母內(nèi)的螺旋管狀通道組合成兩條各自獨立的封閉的鋼球"流道"。轉(zhuǎn)向螺桿轉(zhuǎn)動時,通過鋼球?qū)⒘鹘o轉(zhuǎn)向螺母,螺母即沿軸向移動。同時,在螺桿及螺母與鋼球間的摩擦力偶作用下,所有鋼球便在螺旋管狀通道內(nèi)滾動,形成"球流"。在轉(zhuǎn)向器工作時,兩列鋼球只是在各自的封閉流道內(nèi)循環(huán),不會脫出。在單端輸出的齒輪齒條式轉(zhuǎn)向器上,齒條的一端通過內(nèi)外托架與轉(zhuǎn)向橫拉桿相連。
1.萬向節(jié) 2.轉(zhuǎn)向齒輪軸 3.調(diào)整螺母 4.深溝球軸承 5.滾針軸承 6.固定螺栓 7.轉(zhuǎn)向橫拉桿 8.轉(zhuǎn)向器殼體 9.防塵套 10.轉(zhuǎn)向齒條 11.調(diào)整螺塞 12.鎖緊螺母 13.壓緊彈簧 14.壓塊
圖2-2 中間式齒輪齒條轉(zhuǎn)向器
2.2轉(zhuǎn)向系主要性能參數(shù)
2.2.1轉(zhuǎn)向器的效率
功率P1從轉(zhuǎn)向軸輸入,經(jīng)轉(zhuǎn)向搖臂軸輸出所求得的效率稱為正效率,用符號
η+表示,η+=(P1—P2)/Pl;反之稱為逆效率,用符號η-表示,η- =(P3—P2)/P3。式中,P2為轉(zhuǎn)向器中的摩擦功率;P3為作用在轉(zhuǎn)向搖臂軸上的功率。為了保證轉(zhuǎn)向時駕駛員轉(zhuǎn)動轉(zhuǎn)向盤輕便,要求正效率高。為了保證汽車轉(zhuǎn)向后轉(zhuǎn)向輪和轉(zhuǎn)向盤能自動返回到直線行駛位置,又需要有一定的逆效率。為了減輕在不平路面上行駛時駕駛員的疲勞,車輪與路面之間的作用力傳至轉(zhuǎn)向盤上要盡可能小,防止打手又要求此逆效率盡可能低[1]。
1.轉(zhuǎn)向器正效率η+
影響轉(zhuǎn)向器正效率的因素有:轉(zhuǎn)向器的類型、結(jié)構(gòu)特點、結(jié)構(gòu)參數(shù)和制造質(zhì)量等。
(1)轉(zhuǎn)向器類型、結(jié)構(gòu)特點與效率 在前述四種轉(zhuǎn)向器中,齒輪齒條式、循環(huán)球式轉(zhuǎn)向器的正效率比較高,而蝸桿指銷式特別是固定銷和蝸桿滾輪式轉(zhuǎn)向器的正效率要明顯的低些。
同一類型轉(zhuǎn)向器,因結(jié)構(gòu)不同效率也不一樣。如蝸桿滾輪式轉(zhuǎn)向器的滾輪與支持軸之間的軸承可以選用滾針軸承、圓錐滾子軸承和球軸承等三種結(jié)構(gòu)之一。第一種結(jié)構(gòu)除滾輪與滾針之間有摩擦損失外,滾輪側(cè)翼與墊片之間還存在滑動摩擦損失,故這種轉(zhuǎn)向器的效率ly+僅有54%。另外兩種結(jié)構(gòu)的轉(zhuǎn)向器效率,根據(jù)試驗結(jié)果分別為70%和75%。
轉(zhuǎn)向搖臂軸軸承的形式對效率也有影響,用滾針軸承比用滑動軸承可使正或逆效率提高約10%。
(2)轉(zhuǎn)向器的結(jié)構(gòu)參數(shù)與效率 如果忽略軸承和其它地方的摩擦損失,只考慮嚙合副的摩擦損失,對于蝸桿和螺桿類轉(zhuǎn)向器,其效率可用下式計算
(2.1)
式中,αo為蝸桿(或螺桿)的螺線導程角;ρ為摩擦角,ρ=arctanf;f為摩擦因數(shù)。
2.轉(zhuǎn)向器逆效率η-
根據(jù)逆效率大小不同,轉(zhuǎn)向器又有可逆式、極限可逆式和不可逆式之分。
路面作用在車輪上的力,經(jīng)過轉(zhuǎn)向系可大部分傳遞到轉(zhuǎn)向盤,這種逆效率較高的轉(zhuǎn)向器屬于可逆式。它能保證轉(zhuǎn)向后,轉(zhuǎn)向輪和轉(zhuǎn)向盤自動回正。這既減輕了駕駛員的疲勞,又提高了行駛安全性。但是,在不平路面上行駛時,車輪受到的沖擊力,能大部分傳至轉(zhuǎn)向盤,造成駕駛員“打手”,使之精神狀態(tài)緊張,如果長時間在不平路面上行駛,易使駕駛員疲勞,影響安全駕駛。屬于可逆式的轉(zhuǎn)向器有齒輪齒條式和循環(huán)球式轉(zhuǎn)向器。
不可逆式轉(zhuǎn)向器,是指車輪受到的沖擊力不能傳到轉(zhuǎn)向盤的轉(zhuǎn)向器。該沖擊力由轉(zhuǎn)向傳動機構(gòu)的零件承受,因而這些零件容易損壞。同時,它既不能保證車輪自動回正,駕駛員又缺乏路面感覺;因此,現(xiàn)代汽車不采用這種轉(zhuǎn)向器。
極限可逆式轉(zhuǎn)向器介于上述兩者之間。在車輪受到?jīng)_擊力作用時,此力只有較小一部分傳至轉(zhuǎn)向盤。它的逆效率較低,在不平路面上行駛時,駕駛員并不十分緊張,同時轉(zhuǎn)向傳動機構(gòu)的零件所承受的沖擊力也比不可逆式轉(zhuǎn)向器要小。
如果忽略軸承和其它地方的摩擦損失,只考慮嚙合副的摩擦損失,則逆效率可用下式計算
(2.2)
式(2.1)和式(2.2)表明:增加導程角αo,正、逆效率均增大。受η-增大的影響,αo不宜取得過大。當導程角小于或等于摩擦角時,逆效率為負值或者為零,此時表明該轉(zhuǎn)向器是不可逆式轉(zhuǎn)向器。為此,導程角必須大于摩擦角。通常螺線導程角選在8°~10°之間。
2.2.2傳動比的變化特性
1.轉(zhuǎn)向系傳動比
轉(zhuǎn)向系的傳動比包括轉(zhuǎn)向系的角傳動比和轉(zhuǎn)向系的力傳動比
從輪胎接觸地面中心作用在兩個轉(zhuǎn)向輪上的合力2Fw與作用在轉(zhuǎn)向盤上的手力Fh之比,稱為力傳動比,即 ip=2Fw/Fh 。
轉(zhuǎn)向盤轉(zhuǎn)動角速度 ωw 與同側(cè)轉(zhuǎn)向節(jié)偏轉(zhuǎn)角速度 ωk 之比,稱為轉(zhuǎn)向系角傳動比,即;式中,dφ 為轉(zhuǎn)向盤轉(zhuǎn)角增量;dβk 為轉(zhuǎn)向節(jié)轉(zhuǎn)角增量;dt為時間增量。它又由轉(zhuǎn)向器角傳動比iw 和轉(zhuǎn)向傳動機構(gòu)角傳動比iw′ 所組成,即 iwo=iw iw′ 。
轉(zhuǎn)向盤角速度ωw與搖臂軸轉(zhuǎn)動角速度ωK之比,稱為轉(zhuǎn)向器角傳動比iw′, 即。
式中,dβp為搖臂軸轉(zhuǎn)角增量。此定義適用于除齒輪齒條式之外的轉(zhuǎn)向器。
搖臂軸轉(zhuǎn)動角速度ωp與同側(cè)轉(zhuǎn)向節(jié)偏轉(zhuǎn)角速度ωk之比,稱為轉(zhuǎn)向傳動機構(gòu)的角傳動比iw′,即。
2.力傳動比與轉(zhuǎn)向系角傳動比的關(guān)系
輪胎與地面之間的轉(zhuǎn)向阻力Fw和作用在轉(zhuǎn)向節(jié)上的轉(zhuǎn)向阻力矩 Mr 之間有如下關(guān)系
(2.3)
式中,α為主銷偏移距,指從轉(zhuǎn)向節(jié)主銷軸線的延長線與支承平面的交點至車輪中心平面與支承平面交線間的距離。
作用在轉(zhuǎn)向盤上的手力Fh可用下式表示
(2.4)
式中,Mh為作用在轉(zhuǎn)向盤上的力矩;Dsw為轉(zhuǎn)向盤直徑。
將式(1.3)、式(1.4)代入 ip=2Fw/Fh 后得到
(2.5)
分析式(2.5)可知,當主銷偏移距a小時,力傳動比 ip 應(yīng)取大些才能保證轉(zhuǎn)向輕便。通常轎車的 a 值在0.4~0.6倍輪胎的胎面寬度尺寸范圍內(nèi)選取,而貨車的d值在40~60mm范圍內(nèi)選取。轉(zhuǎn)向盤直徑 Dsw 根據(jù)車型不同在JB4505—86轉(zhuǎn)向盤尺寸標準中規(guī)定的系列內(nèi)選取。
如果忽略摩擦損失,根據(jù)能量守恒原理,2Mr/Mh可用下式表示
(2.6)
將式(1.6)代人式(1.5)后得到
(2.7)
當 α 和 Dsw 不變時,力傳動比 ip 越大,雖然轉(zhuǎn)向越輕,但 iwo 也越大,表明轉(zhuǎn)向不靈敏。
根據(jù)相互嚙合齒輪的基圓齒距必須相等, 即 Pbl=Pb2。其中齒輪基圓齒距Pbl=πmlcosα1,齒條基圓齒距 Pb2=πm2cosα2 。由上述兩式可知:當齒輪具有標準模數(shù)m1和標準壓力角α1與一個具有變模數(shù)m2、變壓力角α2的齒條相嚙合,并始終保持 m1cosoαl=m2cosoα2時,它們就可以嚙合運轉(zhuǎn)。如果齒條中部(相當汽車直線行駛位置)齒的壓力角最大,向兩端逐漸減小(模數(shù)也隨之減小),則主動齒輪嚙合半徑也減小,致使轉(zhuǎn)向盤每轉(zhuǎn)動某同一角度時,齒條行程也隨之減小。因此,轉(zhuǎn)向器的傳動比是變化的。 循環(huán)球齒條齒扇式轉(zhuǎn)向器的角傳動比 iw=2πr/P。因結(jié)構(gòu)原因,螺距 P 不能變化,但可以用改變齒扇嚙合半徑 r 的方法,達到使循環(huán)球齒條齒扇式轉(zhuǎn)向器實現(xiàn)變速比的目的。
隨轉(zhuǎn)向盤轉(zhuǎn)角變化,轉(zhuǎn)向器角傳動比可以設(shè)計成減小、增大或保持不變的。影響選取角傳動比變化規(guī)律的因素,主要是轉(zhuǎn)向軸負荷大小和對汽車機動能力的要求。若轉(zhuǎn)向軸負荷小,在轉(zhuǎn)向盤全轉(zhuǎn)角范圍內(nèi),駕駛員不存在轉(zhuǎn)向沉重問題。裝用動力轉(zhuǎn)向的汽車,因轉(zhuǎn)向阻力矩由動力裝置克服,所以在上述兩種情況下,均應(yīng)取較小的轉(zhuǎn)向器角傳動比并能減少轉(zhuǎn)向盤轉(zhuǎn)動的總?cè)?shù),以提高汽車的機動能力。
轉(zhuǎn)向盤在中間位置的轉(zhuǎn)向器角傳動比不宜過小。過小則在汽車高速直線行駛時,對轉(zhuǎn)向盤轉(zhuǎn)角過分敏感和使反沖效應(yīng)加大,使駕駛員精確控制轉(zhuǎn)向輪的運動有困難。直行位置的轉(zhuǎn)向器角傳動比不宜低于15~16。
3 齒輪齒條的設(shè)計步驟
3.1齒輪齒條的設(shè)計
(1)材料的選擇
轉(zhuǎn)向系統(tǒng)直接關(guān)系著生命財產(chǎn)的安全,屬于保安系統(tǒng),安全系數(shù)要求較高。轉(zhuǎn)向器扭距低,受到中等沖擊,工作環(huán)境較惡劣,材料選擇十分重要。齒輪通常選用國內(nèi)常用、性能優(yōu)良的20CrMnTi合金鋼,熱處理采用表面滲碳淬火工藝,齒面硬度為HRc58~63。而齒條選用與20CrMnTi具有較好匹配性的40Cr作為嚙合副,齒條熱處理采用高頻淬火工藝,表面硬度HRc50~56。
(2)精度等級的確定
借鑒“金杯”微型汽車系列所用的齒輪齒條轉(zhuǎn)向器的經(jīng)驗,選用8級精度。
(3)螺旋角的選擇
轉(zhuǎn)向小齒輪都采用斜齒,螺旋角在之間,故我們這里選擇右旋
(4)輸入扭距的確定
從車輪傳到齒輪的反向輸入扭距
(3.1)
式中 N1——前軸載荷;
K——名義反力力臂,普通轎車、微型汽車按日本設(shè)計慣例取0.10m
I——轉(zhuǎn)向機構(gòu)的反向傳動比,一般為12~18。
取汽車N 1=6478 N,i取為12,則T′1=26.9Nm。
從轉(zhuǎn)向盤輸入的操縱載荷傳到齒輪的力矩:
(3.2)
式中 Ras—轉(zhuǎn)向盤作用半徑;
f′ —作用在轉(zhuǎn)向盤上的操縱載荷;對轎車該力不應(yīng)超過150~200N,對貨車不應(yīng)超過500N。
取汽車的Ras=0.195m,取f′為200 N,則 T1′′=39Nm。
由(3.1)和(3.2)上述兩個公式計算,取T1′、 T1′′中較大的一者作為輸入扭距的值,則T 1 =39 Nm。
(5)齒輪法面模數(shù)的確定
按文獻中彎曲疲勞進行齒輪法面模數(shù)的計算:
(3.3)
式中:
K—載荷系數(shù),包括工作情況系數(shù)KA、動載荷系數(shù)KV、嚙合齒對間載荷分配系數(shù)KU及載荷分布不均勻系數(shù)Kβ 即
K=KA KV KU Kβ
微型汽車或普通轎車載荷小、轉(zhuǎn)向器運動時一般速度不高,各參數(shù)選擇可以取1~1.25,綜合起來可以取K=1.25。
Yβ—螺旋角影響系數(shù),計算出縱向重合度εa =0.318Φd Z 1 tgβ再按其查出數(shù)據(jù):
Φd—齒寬系數(shù),可以從文獻中查表獲得,但是為了保證強度可以調(diào)整至1.5 ~2;
Z 1—齒輪齒數(shù),一般為5 ~7,根據(jù)設(shè)計經(jīng)驗,齒輪齒數(shù)初步選為6;
β — 螺旋角,一般稱齒輪螺旋角為β1,齒條螺旋角為β2;
YFa — 齒輪的齒形系數(shù),可近似的按當量齒數(shù)ZV≈Z/cos3β從文獻中查表獲得;
Ysa —齒輪的應(yīng)力校正系數(shù),可近似的按當量齒數(shù)ZV≈Z/cos3β從文獻中查表獲得;
[σF] —彎曲疲勞許用應(yīng)力:[σF]=KNσlim/S;
KN—壽命系數(shù),可以從文獻中查表獲得;
σlim—齒輪的彎曲疲勞極限,可以從文獻中查表獲得;
S —疲勞強度系數(shù),轉(zhuǎn)向器載荷并不大、但屬于關(guān)鍵件,S可以取1..25~1.5之間,微輕型車可取下限。
εa—端面重合度,可以從文獻中查表獲得(當齒數(shù)小于時,可按17進行查表)
根據(jù)汽車的有關(guān)參數(shù)代入公式得出(由于各種系數(shù)選取的差異,不同的人員計算,結(jié)果會有所不同);
mn≥2.08mm
計算出mn 后,為了縮短開發(fā)周期,利用現(xiàn)有的刀具等工藝手段,一般要同已經(jīng)生產(chǎn)過的齒輪齒條轉(zhuǎn)向器的法面模數(shù)進行對比,取得相近現(xiàn)存的模數(shù),“金杯”中意車齒輪法面模數(shù)為2.5mm>2.08mm,此設(shè)計也采用該模數(shù),所以該齒輪齒條轉(zhuǎn)向器的齒輪法面模數(shù)取為2.5mm。確定模數(shù)后,再按下面的計算公式進行接觸疲勞強度的校核。
(3.4)
式中: F t—齒輪所受圓周力:
F t =2T 1/d1
d1—齒輪的節(jié)圓直徑,對于標準齒輪即為分度圓;
b—齒輪齒寬,b=Φd d1;
u—齒數(shù)比(= Z 2′/ Z 1),齒輪齒條齒數(shù)比不同于常規(guī)的齒輪與齒輪嚙合的齒數(shù)比,Z 2′由整車總布置所確定的中心距a按下面的公式計算能得出:
(3.5)
Z H—區(qū)域系數(shù):
α—法面壓力角,選齒輪齒條為20°;
[σH ] H—接觸疲勞許用應(yīng)力:[σH ] H = KNσHlim/S;
σHlim —齒輪的接觸疲勞極限,可以從文獻中查表獲得;
對微型汽車轉(zhuǎn)向器的齒輪接觸疲勞強度進行校核,滿足強度要求。 (5)齒輪齒數(shù)Z1的選擇
主動小齒輪的齒數(shù)在5~7之間,這里我們?nèi) 1=6
(6)齒條齒數(shù)Z 2的選擇
齒條齒數(shù)Z 2的選定需要從車體的總布置和最大轉(zhuǎn)角考慮來確定總行程,汽車齒條總行程H按原車要求為80mm×2。齒條齒數(shù)Z 2的條件必須滿足:
Z 2≥H/(πmncosαn) (3.6)
那么Z 2≥26,考慮制造公差,取Z 2=28。
(7)齒輪變位系數(shù)X n1的確定
根據(jù)文獻,最小變位系數(shù)為:
X min=h a*( Z min-Z)/ Z min (3.7)
式中:h a*——齒頂高系數(shù)。
對于α=20°,h a* =1的齒條插刀或滾刀,Z min=17;汽車α=20°,h a*=1.0,可以按照上式計算出X min=0.6775,因而轉(zhuǎn)向器中齒輪變位系數(shù)必須大于0.6775。
根據(jù)文獻中變位系數(shù)選擇選取X n1=0.9483>06775,滿足要求。
(8)中心距a的確定
中心距的計算需要根據(jù)整車總布置確定,但必須滿足:
a>d 1/2+ h t2
式中:h t2——齒條齒根高。
轉(zhuǎn)向器中齒輪和齒條的中心距根據(jù)整車總布置取a=14.72mm。
(9)齒頂高、齒根高的確定
考慮到轉(zhuǎn)向器齒輪齒條傳動副的特點,齒輪采用短齒,齒條采用長齒,以增強整個傳動副的彎曲強度、表面強度、耐磨性和抗沖擊性。
日本一般習慣采用h a*=1.047和h a*=1.097兩種方案,此處選h a*=1.047,因此齒根高系數(shù)h f* 相應(yīng)的取0.810;日本還習慣齒頂隙取0.3-0.5??紤]到齒條齒數(shù)較多,采用大的齒頂間隙可以增加潤滑油的存儲量,對于提高潤滑性能有利,故而齒條根部頂隙取上限為C1=0.5,齒輪根部頂隙取C2 =0.3。則齒條的齒頂高h a2 、齒根高h t2 和齒輪的齒頂高h a1 、
齒根高h t1可按下列公式計算出來:
h a2 = h a* mn (3.8)
h f2 = h f* mn (3.9)
h a1 = h f2 – C (3.10)
h f1 = h a2 + C2 (3.11)
顯然,轉(zhuǎn)向器齒輪齒條的齒頂高、齒根高為:h a1 =1.2mm;h f1 =2.5mm; h a2 =2.2mm; h f2 =1.7mm。
(10)幾何計算
a)根據(jù)上述選定的參數(shù)即可進行齒輪分度圓、節(jié)圓的集合計算和機構(gòu)設(shè)計:
d1′=mnZ1 (3.12)
式中:d1′——分度圓直徑。
d1= d1′+2Xn1mn
轉(zhuǎn)向器齒輪分度圓、節(jié)圓直徑分別為14.8567mm和18.84mm。
b )齒條棒材直徑的確定:
轉(zhuǎn)向器齒條棒材的直徑通常分別分為22mm、26mm和28mm三個系列,微型汽車和普通汽車常用直徑為22m 的棒材,次設(shè)計采用的轉(zhuǎn)向器齒條亦選定這種規(guī)格。
3.2 強度校核
1、校核齒輪接觸疲勞強度
選取參數(shù),按ME級質(zhì)量要求取值
, ; , ,
故以 計算
(3-13)
查得: , , , ;
, , , 則,
(3-14)
齒輪接觸疲勞強度合格。
2、校核齒輪彎曲疲勞強度
選取參數(shù),按ME級質(zhì)量要求取值; ; ; ; ;
故以 計算 :
(3-15)
據(jù)齒數(shù)查表有:; ; ; 。則:
(3-16)
齒輪彎曲疲勞強度合格。
3.3齒輪齒條設(shè)計程序框圖
輸入?yún)?shù)
計算齒輪輸入力矩
根據(jù)彎曲疲勞強度計算模數(shù)
選擇現(xiàn)存模數(shù)
計算接觸疲勞應(yīng)力σH
計算出d1、d1′
輸出
開始
結(jié)束
圖3-1 齒 輪 齒 條 設(shè) 計 程 序 框 圖
隨著電子科技的發(fā)展,也可以通過電腦程序進行設(shè)計,經(jīng)過查閱資料給出一個齒輪齒條設(shè)計計算機框圖,如上:
按照上述程序計算,同樣計算可以獲得結(jié)果:轉(zhuǎn)向器齒輪分度圓、節(jié)圓直徑分別為14.8567mm和18.84mm。并且滿足各種強度校核。
4 轉(zhuǎn)向器齒輪軸設(shè)計及其校核
作為重要的汽車元件,起主要的傳動部位一定要保證其足夠的強度,雖然在轉(zhuǎn)向器中,各部分零件尺寸體積相對大型機械要小的多,但是其在整個機械系統(tǒng)中的重要作用不容忽視,要進行細致的設(shè)計及其校核。
4.1確定使用材料
由于在轉(zhuǎn)向器中這個轉(zhuǎn)向齒輪軸直接接觸的是轉(zhuǎn)向齒條,在整個轉(zhuǎn)向系統(tǒng)中起著最重要的傳動,通過齒輪和齒條的無間隙嚙合實現(xiàn)轉(zhuǎn)向,在整個傳動過程中受力也是最大的,所以在這里考慮其力學性能及其各方面邊的要求選用 45鋼作為此齒輪軸的材料,并進行調(diào)質(zhì)或正火處理。
4.2 軸的結(jié)構(gòu)的設(shè)計及校核
由于其體積和所在的位置,軸上零件不是很復(fù)雜,所裝零件軸承蓋,油封。不像大型機械的軸要加工出階梯狀,該軸既是一根圓軸,其固定在殼體之中,與齒條相配合,由于此軸是通過方向盤、萬向節(jié)傳到此軸具體的力和功率不像選擇電動機那樣有模式可以參考。我們只能通過估計駕駛員的平均轉(zhuǎn)動方向盤的轉(zhuǎn)速推算,這里假象在緊急情況下駕駛員的轉(zhuǎn)動方向盤的速度為180r/min,因為轉(zhuǎn)向器的的齒輪齒條是安裝在殼體和閥體內(nèi)的,其尺寸可根據(jù)殼體和閥體的尺寸加以定出,因為閥體直徑中的最小徑為26.5mm,再加上在齒輪齒條設(shè)計出齒高,我這里暫時定下齒輪軸的軸徑為20mm。
由于上面定出軸徑為20mm,所以由得出
P=0.09KW,其中C為查表得,因為材料選定45鋼,所以C的取值在118~107之間,這里取C為115。下面把軸的受力簡圖繪制如下:
Ft Fr
Fa
(a)受力簡圖
40 50 26
Fa
Fr
(b)垂直面的受力和彎矩圖
FBV FDV
5150 2158
Ft
(C)水平面受力和彎矩圖
`
FBH FDH
7450
(d)垂直和水平面的合成彎矩圖
9057 8051
(e)扭矩圖
T=4775
4775 13832 8051
(f)當量彎矩圖
(1)齒輪上作用力的大小
轉(zhuǎn)矩
齒輪端面分度圓直徑
圓周力
徑向力
軸向力
(2)求垂直面上軸承的支反力及主要截面的彎矩
截面C處的彎矩為:
(3)水平面上軸承的支反力及主要截面的彎矩
截面C處的彎矩為:
(4)截面C處垂直面和水平面的合成彎矩
(5)按彎扭合成應(yīng)力校核軸的強度
進行校核時,通常只校核軸上承受最大彎矩和扭矩的截面的強度,根據(jù)公式及其以上的載荷數(shù)值,并取α=0.6。該截面上的計算應(yīng)力:
因為前面選定的材料為45鋼,調(diào)質(zhì)處理,有機械設(shè)計教材查得,由于,所以安全。
經(jīng)過上面的計算校核可以確定所選方按可行。
轉(zhuǎn)向器的裝配圖如下:
圖3-1齒輪齒條轉(zhuǎn)向器裝配圖
1—轉(zhuǎn)向齒輪 2—轉(zhuǎn)向齒條 3—補償彈簧 4—調(diào)整螺塞
5—螺母 6—壓板 7—防塵罩 8—油封 9—軸承
圖3-2齒輪齒條機械式轉(zhuǎn)向器結(jié)構(gòu)圖
1—