2019-2020年高中化學 課題17 分子的立體結構競賽講義.doc
《2019-2020年高中化學 課題17 分子的立體結構競賽講義.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中化學 課題17 分子的立體結構競賽講義.doc(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中化學 課題17 分子的立體結構競賽講義 學習目標:1、CO2、H2O、NH3、CH2O、CH4的空間構型 2、價層電子對互斥模型 學習過程: 一、形形色色的分子 大多數(shù)分子是由兩個以上原子構成的,于是就有了分子中的原子的空間關系問題,這就是所謂“分子的立體結構”。例如,三原子分子的立體結構有直線形和V形兩種。如C02分子呈直線形,而H20分子呈V形,兩個H—O鍵的鍵角為105°。 三原子分子立體結構:有直線形C02 、CS2等,V形如H2O、S02等。 大多數(shù)四原子分子采取平面三角形和三角錐形兩種立體結構。例如,甲醛(CH20)分子呈平面三角形,鍵角約120°;氨分子呈三角錐形,鍵角107°。 四原子分子立體結構:平面三角形:如甲醛(CH20)分子等,三角錐形:如氨分子等。 五原子分子的可能立體結構更多,最常見的是正四面體形,如甲烷分子的立體結構是正四面體形,鍵角為109°28/。 五原子分子立體結構:正四面體形如甲烷、P4等 測分子體結構:紅外光譜儀→吸收峰→分析 肉眼不能看到分子,那么,科學家是怎樣知道分子的形狀的呢?早年的科學家主要靠對物質的宏觀性質進行系統(tǒng)總結得出規(guī)律后進行推測,如今,科學家已經(jīng)創(chuàng)造了許許多多測定分子結構的現(xiàn)代儀器,紅外光譜就是其中的一種。 分子中的原子不是固定不動的,而是不斷地振動著的。所謂分子立體結構其實只是分子中的原子處于平衡位置時的模型。當一束紅外線透過分子時,分子會吸收跟它的某些化學鍵的振動頻率相同的紅外線,再記錄到圖譜上呈現(xiàn)吸收峰。通過計算機模擬,可以得知各吸收峰是由哪一個化學鍵、哪種振動方式引起的,綜合這些信息,可分析出分子的立體結構。 2、 價層電子對互斥模型 在1940年,希吉維克(Sidgwick)和坡維爾(Powell)在總結實驗事實的基礎上提出了一種簡單的理論模型,用以預測簡單分子或離子的立體結構。這種理論模型后經(jīng)吉列斯比(R.J,Gillespie)和尼霍爾姆(Nyholm)在20世紀50年代加以發(fā)展,定名為價層電子對互斥模型,簡稱VSEPR(Valence Shell Electron Pair Repulsion)。 1.價層電子互斥模型 分子的空間構型與成鍵原子的價電子有關。價層電子對互斥模型可以用來預測分子的立體結構。應用這種理論模型,分子中的價電子對(包括成鍵電子對和孤電子對),由于相互排斥作用,而趨向盡可能彼此遠離以減小斥力,分子盡可能采取對稱的空間構型。 價電子對之間的斥力 1).電子對之間的夾角越小,排斥力越大。 2).由于成鍵電子對受兩個原子核的吸引,所以電子云比較緊縮,而孤對電子只受到中心原子的吸引,電子云比較“肥大”,對鄰近電子對的斥力較大,所以電子對之間的斥力大小順序如下:孤電子對—孤電子對>孤電子對—成鍵電子>成鍵電子—成鍵電子 3).由于三鍵、雙鍵比單鍵包含的電子數(shù)多,所以其斥力大小次序為三鍵>雙鍵>單鍵 2.價層電子對互斥理論:對ABn型的分子或離子,中心原子A價層電子對(包括用于形成共價鍵的共用電子對和沒有成鍵的孤對電子)之間存在排斥力,將使分子中的原子處于盡可能遠的相對位置上,以使彼此之間斥力最小,分子體系能量最低。 3.價層電子對互斥模型: 這種模型把分子分成以下兩大類:一類是中心原子上的價電子都用于形成共價鍵,如C02、CH20、CH4等分子中的碳原子,在這類分子中,由于價層電子對之間的相互排斥作用,它們趨向于盡可能的相互遠離,成鍵原子的幾何構型總是采取電子對排斥最小的那種結構。它們的立體結構可用中心原子周圍的原子數(shù)n來預測,概括如下: ABn 立體結構 范例 n=2 直線型 CO2 n=3 平面三角形 CH2O n=4 正四面體型 CH4 另一類是中心原子上有孤對電子(未用于形成共價鍵的電子對)的分子,如H2O和NH3,對于這類分子,首先建立四面體模型,每個鍵占據(jù)一個方向(多重鍵只占據(jù)一個方向),孤對電子也要占據(jù)中心原子周圍的空間,并參與互相排斥。例如,H20和NH3的中心原子上分別有2對和l對孤對電子,跟中心原子周圍的σ鍵加起來都是4,它們相互排斥,形成四面體,因而H:O分子呈V形,NH3分子呈三角錐形。 (1)、中心原子上的價電子都用于形成共價鍵:分子中的價電子對相互排斥的結果 (2).中心原子上有孤對電子:孤對電子也要占據(jù)中心原子周圍的空間,并參與互相排斥,使分子的空間結構發(fā)生變化。 4. 價層電子對互斥理論的應用 利用價層電子對互斥理論時,首先要根據(jù)原子的最外層電子數(shù),判斷中心原子上有沒有孤對電子,然后再根據(jù)中心原子結合的原子的數(shù)目,就可以判斷分子的空間構型 (1) 確定中心原子A價層電子對數(shù)目 中心原子A的價電子數(shù)與配體X提供共用的電子數(shù)之和的一半,即中心原子A價層電子對數(shù)目。計算時應注意: (1)氧族元素原子作為配位原子時,可認為不提供電子,但作為中心原子時可認為它所提供所有的6個價電子. (2) 如果討論的是離子,則應加上或減去與離子電荷相應的電子數(shù)。如PO43-中P原子價層電子數(shù)就加上3,而NH4+ 中N原子的價層電子數(shù)應減去1. (3) 如果價層電子數(shù)出現(xiàn)奇數(shù)電子,可把這個單電子當作電子對來看待. (2) 價電子對數(shù)計算方法 對于ABm型分子(A為中心原子,B為配位原子),分子的價電子對數(shù)可以通過下式確定 n = (3) 確定價層電子對的空間構型 由于價層電子對之間的相互排斥作用,它們趨向于盡可的相互遠離。價層電子對的空間構型與價層電子對數(shù)目的關系: 價層電子對數(shù)目n 2 3 4 5 6 價層電子對構型 直線 三角形 四面體 三角雙錐 八面體 (4) 分子空間構型確定 根據(jù)分子中成鍵電子對數(shù)和孤對電子數(shù),可以確定相應的穩(wěn)定的分子幾何構型。 例1:應用VESPR理論,判斷下列粒子構型:CH4 、ClO3― 、PCl5 解析: 在CH4 中,C 有4個電子,4個H 提供4個電子,C 的價層電子總數(shù)為8個,價層電子對為4對 。C 的價層電子對的排布為正四面體,由于價層電子對全部是成鍵電子對,因此 CH4 的空間構型為正四面體。 在ClO3― 中,Cl 有7個價電子,O不提供電子,再加上得到的1個電子,價層電子總數(shù)為8個,價層電子對為4對。Cl的價層電子對的排布為四面體,四面體的 3 個頂角被3個O占據(jù),余下的一個頂角被孤對電子占據(jù),因此 為三角錐形。 在 PCl5 中,P 有5個價電子,5 個Cl分別提供1個電子,中心原子共有5對價層電子對,價層電子對的空間排布方式為三角雙錐,由于中心原子的價層電子對全部是成鍵電子對,因此PCl5 的空間構型為三角雙錐形。 總結歸納: 價層電子對互斥模型對少數(shù)化合物判斷不準,不能適用于過渡金屬化合物,除非金屬具有全滿、半滿或全空的d軌道。根據(jù)價層電子對互斥理論:分子的立體結構是由于分子中的價電子對相互排斥的結果,其規(guī)律如下: 分子類型 中心原子 空間構型 AB2 有孤對電子 V型 無孤對電子 直線形 AB3 有孤對電子 三角錐形 無孤對電子 平面三角形 AB4 無孤對電子 四面體形 例2:(1)用VSEPR模型預測,下列分子形狀與H2O相似,都為V型的是 A.OF2 B.BeCl2 C.SO2 D.CO2 (2)用VSEPR模型預測,下列分子中鍵角不是1200的是 A.C2H2 B.C6H6 C.BF3 D.NH3 三、雜化軌道理論簡介 1、雜化的概念:在形成多原子分子的過程中,中心原子的若干能量相近的原子軌道重新組合,形成一組新的軌道,這個過程叫做軌道的雜化,產(chǎn)生的新軌道叫雜化軌道。雜化軌道理論是一種價鍵理論,是鮑林為了解釋分子的立體結構提出的。為了解決甲烷分子四面體構型,鮑林提出了雜化軌道理論,它的要點是:當碳原子與4個氫原子形成甲烷分子時,碳原子的2s軌道和3個2p軌道會發(fā)生混雜,混雜時保持軌道總數(shù)不變,卻得到4個相同的軌道,夾角109°28′,稱為sp3雜化軌道,表示這4個軌道是由1個s軌道和3個p軌道雜化形成的。當碳原子跟4個氫原子結合時,碳原子以4個sp3雜化軌道分別與4個氫原子的ls軌道重疊,形成4個C--Hσ鍵,因此呈正四面體的分子構型。 雜化軌道理論認為:在形成分子時,通常存在激發(fā)、雜化、軌道重疊等過程。但應注意,原子軌道的雜化,只有在形成分子的過程中才會發(fā)生,而孤立的原子是不可能發(fā)生雜化的。同時只有能量相近的原子軌道才能發(fā)生雜化,而1s軌道與2p軌道由于能量相差較大,它是不能發(fā)生雜化的。 2、雜化軌道的類型: (1) sp3雜化1個s軌道和3個p軌道會發(fā)生混雜,得到4個相同的軌道,夾角109°28′,稱為sp3雜化軌道。 空間結構:空間正四面體或V型、三角錐型。 凡屬于VESPR模型的AY4的分子中心原子A都采取sp3 雜化類型。例如CH4、NH3、H2O等。其中像CH4這類與中心原子鍵合的是同一種原子,因此分子呈高度對稱的正四面體構型,其中的4個sp3雜化軌道自然沒有差別,這種雜化類型叫做等性雜化。而像NH3、H2O這類物質的中心原子的4個sp3雜化軌道用于構建不同的σ鍵或孤對電子,這個的4個雜化軌道顯然有差別,叫做不等性雜化, (2) sp2雜化:同一個原子的一個 ns 軌道與兩個 np 軌道進行雜化組合為 sp2 雜化軌道。 sp2 雜化軌道間的夾角是120°,分子的幾何構型為平面正三角形。 應當注意的是,雜化過程中還有未參與雜化的p軌道,可用于形成π鍵,而雜化軌道只用于形成σ鍵或者用來容納未參與成鍵的孤對電子。而沒有填充電子的空軌道一般都不參與雜化。如:乙烯分子中的碳原子的原子軌道采用sp2雜化。其中兩個碳原子間各用一個sp2雜化軌道形成σ鍵,用兩個sp2雜化軌道與氫原子形成σ鍵,兩個碳原子各用一個未參加雜化的2p原子軌道形成Π鍵。 苯環(huán)分子中的碳原子的原子軌道采用了sp2雜化。每個碳原子上的三個sp2雜化軌道分別與兩個相鄰的碳原子和一個氫原子形成三個σ鍵并形成六碳環(huán),每個碳原子上的未雜化2p軌道采用“肩并肩”的方式重疊形成大Π鍵。大Π鍵的形成使苯環(huán)上的所用原子處于同一平面,且結構穩(wěn)定。 (3) sp 雜化:同一原子中 ns-np 雜化成新軌道:一個 s 軌道和一個 p 軌道雜化組合成兩個新的 sp 雜化軌道。 sp雜化:夾角為180°的直線形雜化軌道。 雜化軌道成鍵時,要滿足化學鍵間最小排斥原理,鍵與鍵間的排斥力大小決定于鍵的方向,即決定于雜化軌道間的夾角。由于鍵角越大化學鍵之間的排斥能越小,對sp雜化來說,當鍵角為180時,其排拆力最小,所以sp雜化軌道成鍵時分子呈直線形;對sp2雜化來說,當鍵角為120時,其排斥力最小,所以sp2雜化軌道成鍵時,分子呈平面三角形。由于雜化軌道類型不同,雜化軌道夾角也不相同,其成鍵時鍵角也不相同,故雜化軌道的類型與分子的空間構型有關。 3、AB m雜化類型的判斷 公式:電子對數(shù)n= 在上述公式使用時,電荷為正值時,取負號,電荷為負值時,取正號。當配位原子為氧原子或硫原子時,成鍵電子數(shù)為零。 電子對數(shù)n 2 3 4 雜化類型 sp Sp2 Sp3 例如:SO2 電子對數(shù)為(6+0)/2=3,為sp2雜化。 雜化類型 雜化軌道數(shù)目 雜化軌道間的夾角 空間構型 實例 Sp 2 180° 直線 BeCl2 Sp2 3 120° 平面三角形 BF3 Sp3 4 109°28′ 四面體形 CH4- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中化學 課題17 分子的立體結構競賽講義 2019 2020 年高 化學 課題 17 分子 立體 結構 競賽 講義
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://kudomayuko.com/p-1981359.html