2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 正弦定理和余弦定理教案 新人教A版
《2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 正弦定理和余弦定理教案 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 正弦定理和余弦定理教案 新人教A版(17頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 正弦定理和余弦定理教案 新人教A版 自主梳理 1. 正弦定理:____=______=___=2R,其中R是三角形外接圓的半徑. 由正弦定理可以變形為:(1)a∶b∶c=____ sin A∶sin B∶sin C _____; (2)a=___)2Rsin A _____,b=__2Rsin B _____,c=__2Rsin C ___; (3)sin A=_______,sin B=______,sin C=_______等形式,以解決不同的三角形問題. 2.余弦定理:a2=__ b2+c2-2bccos A ________,b2=__ a2
2、+c2-2accos B _____, c2=____ a2+b2-2abcos C ____. 余弦定理可以變形為:cos A=___________,cos B=_________, cos C=_________. 3.S△ABC=absin C=bcsin A=acsin B==(a+b+c)·r(r是三角形內(nèi)切圓的半徑),并可由此計(jì)算R、r. 4.在解三角形時(shí),正弦定理可解決兩類問題:(1)已知兩角及任一邊,求其它邊或角;(2)已知兩邊及一邊的對(duì)角,求其它邊或角.情況(2)中結(jié)果可能有一解、二解、無解,應(yīng)注意區(qū)分. 余弦定理可解決兩類問題: (1)已知兩邊及夾角或兩邊及一
3、邊對(duì)角的問題;(2)已知三邊問題. 解三角形時(shí),三角形解的個(gè)數(shù)的判斷 在△ABC中,已知a、b和A時(shí),解的情況如下: A為銳角 A為鈍角或直角 圖形 關(guān)系式 a=bsin A bsin Ab 解的個(gè)數(shù) 一解 兩解 一解 一解 5.判斷三角形的形狀特征 必須從研究三角形的邊角關(guān)系入手,充分利用正、余弦定理進(jìn)行轉(zhuǎn)化,即化邊為角或化角為邊,邊角統(tǒng)一. ①等腰三角形:a=b或A=B. ②直角三角形: b2+c2=a2 或 A=90° . ③鈍角三角形: a2>b2+c2
4、 或 A>90° . ④銳角三角形:若a為最大邊,且滿足 a2<b2+c2 或A為最大角,且 A<90° . 6.由正弦定理容易得到:在三角形中,大角對(duì)大邊,大邊對(duì)大角;大角的正弦值也較大,正弦值較大的角也較大,即A>B?a>b?sinA>sinB. 基礎(chǔ)自測(cè) 1.在△ABC中,若A=60°,a=,則=________. 2.(xx·北京)在△ABC中,若b=1,c=,C=,則a=________. 3.在△ABC中,a=15,b=10,A=60°,則cos B=________. 4.△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、
5、b、c,已知c=3,C=,a=2b,則b的值為________. 5.已知圓的半徑為4,a、b、c為該圓的內(nèi)接三角形的三邊,若abc=16,則三角形的面積為 ( ) A.2 B.8 C. D. 1.2 2.1 3. 4. 5.C 6.在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,若a、b、c成等差數(shù)列,B=30°,△ABC的面積為,則b= . 【解析】∵S△ABC=acsinB=acsin30°=,∴ac=6. 又a、b、c成等差數(shù)列,故2b=a+c. 由余弦定理得b2=a2+c2-2accosB
6、 =(a+c)2-2ac-2accos30°, ∴b2=4b2-12-6,得b2=4+2,∴b=1+. 7.在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,若a=2bcosC,則此三角形一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等腰三角形或直角三角形 【解析】由a=2bcosC得sinA=2sinBcosC ∵A+B+C=π ∴sinA=sin(B+C) ∴sin(B+C)=2sinBcosC 即sin(B-C)=0 ∵0
7、q:△ABC是等邊三角形,則命題p是命題q的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 【解析】∵==,由正弦定理知:==. ∴sinB=sinA=sinC ∴A=B=C?a=b=c,∴p?q 又若a=b=c,則A=B=C=60°?sinA=sinB=sinC. ∴==,∴q?p. 題型一 利用正弦定理求解三角形及有關(guān)三角形中的三角函數(shù)的范圍(最值) 例1?、旁凇鰽BC中,a=,b=,B=45°.求角A、C和邊c. (2)在△ABC中,a=8,B=60°,C=75°,求邊b和c. 解 (1)由正弦定
8、理得=, =,∴sin A=. ∵a>b,∴A=60°或A=120°. 當(dāng)A=60°時(shí),C=180°-45°-60°=75°,c==; 當(dāng)A=120°時(shí),C=180°-45°-120°=15°,c==. (2)∵B=60°,C=75°,∴A=45°.由正弦定理==, 得b==4,c==4+4.∴b=4,c=4+4. (2)設(shè)銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a=2bsinA. ①求角B的大小; ②求cosA+sinC的取值范圍. 解析 ①由a=2bsinA,根據(jù)正弦定理得sinA=2sinBsinA, 所以sinB=,由△ABC為銳角三角形得B=
9、. ②cosA+sinC=cosA+sin(π--A)=cosA+sin(+A) =cosA+cosA+sinA=sin(A+). 由△ABC為銳角三角形知,>A>-B,又-B=-=. ∴<A+<,∴<sin(A+)<. 由此有<sin(A+)<×=,所以cosA+sinC的取值范圍為(,). 點(diǎn)評(píng) 解決這類問題的關(guān)鍵是利用正弦定理和余弦定理,要么把角化成邊,要么把邊化成角,然后再進(jìn)行三角恒等變換得到y(tǒng)=Asin(ωx+φ)+B型函數(shù),從而求解單調(diào)區(qū)間、最值、參數(shù)范圍等問題,注意限制條件A+B+C=π,0<A,B,C<π的應(yīng)用,如本題中由△ABC為銳角三角形得到A+B>,從而推
10、到<A+<. 探究提高 (1)已知兩角一邊可求第三角,解這樣的三角形只需直接用正弦定理代入求解即可. (2)已知兩邊和一邊對(duì)角,解三角形時(shí),利用正弦定理求另一邊的對(duì)角時(shí)要注意討論該角,這是解題的難點(diǎn),應(yīng)引起注意. 變式訓(xùn)練1 (1) 已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若a=1,b=,A+C=2B,則角A的大小為________. (2)在△ABC中,若tan A=,C=150°,BC=1,則AB=________; (3)在△ABC中,若a=50,b=25,A=45°,則B=______ 解析 (2)∵在△ABC中,tan A=,C=150°
11、, ∴A為銳角,∴sin A=.又∵BC=1. ∴根據(jù)正弦定理得AB==. (3)由b>a,得B>A,由=, 得sin B==×=, ∵0°
12、cos(B+)=sinA-cos(π-A) =sinA+cosA=2sin(A+). ∵0<A<,∴<A+<, 從而當(dāng)A+=,即A=時(shí),2sin(A+)取最大值2. 綜上所述,sinA-cos(B+)的最大值為2, 此時(shí)A=,B=. (5)如圖,已知△ABC是邊長(zhǎng)為1的正三角形,M、N分別是邊AB、AC上的點(diǎn),線段MN經(jīng)過△ABC的重心G.設(shè)∠MGA=α(≤α≤). ①試將△AGM、△AGN的面積(分別記為S1與S2)表示為α的函數(shù); ②求y=+的最大值與最小值. 解析①因?yàn)镚是邊長(zhǎng)為1的正三角形ABC的重心, 所以AG=×=,∠MAG=, 由正弦定理=,得GM=.
13、 則S1=GM·GA·sinα=(或). 又=,得GN=, 則S2=GN·GA·sin(π-α) =(或), ②y=+=·[sin2(α+)+sin2(α-)]=72(3+cot2α). 因?yàn)椤堞痢?,所以,?dāng)α=或α=時(shí),y取得最大值ymax=240; 當(dāng)α=時(shí),y取得最小值ymin=216. 題型二 利用余弦定理求解三角形 例2 在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,且=-. (1)求角B的大??; (2)若b=,a+c=4,求△ABC的面積. 解 (1)由余弦定理知: cos B=,cos C=. 將上式代入=-得: ·=-, 整理得:a2+c2
14、-b2=-ac.∴cos B===-. ∵B為三角形的內(nèi)角,∴B=π. (2)將b=,a+c=4,B=π代入b2=a2+c2-2accos B, 得b2=(a+c)2-2ac-2accos B,∴13=16-2ac,∴ac=3. ∴S△ABC=acsin B=. 探究提高 (1)根據(jù)所給等式的結(jié)構(gòu)特點(diǎn)利用余弦定理將角化邊進(jìn)行變形是迅速解答本題的關(guān)鍵. (2)熟練運(yùn)用余弦定理及其推論,同時(shí)還要注意整體思想、方程思想在解題過程中的運(yùn)用. 變式訓(xùn)練2 1.已知a、b、c分別是△ABC中角A、B、C的對(duì)邊,且a2+c2-b2=ac. (1)求角B的大??; (2)若c=3a,求t
15、an A的值. 解 (1)∵a2+c2-b2=ac,∴cos B==. ∵0a,∴B>A,∴cos A==. ∴tan A==. 方法三 ∵c=3a,由正弦定理,得sin C=3sin A. ∵B=,∴C=π-(A+B)=-A,∴sin(-A)=3sin A, ∴s
16、incos A-cossin A=3sin A,∴cos A+sin A=3sin A, ∴5sin A=cos A,∴tan A==. 2.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足cos =, ·=3. (1)求△ABC的面積; (2)若b+c=6,求a的值. 解 (1)∵cos =,∴cos A=2cos2-1=, ∴sin A=.又·=3,∴bccos A=3,∴bc=5. ∴S△ABC=bcsin A=×5×=2. (2)由(1)知,bc=5,又b+c=6, 根據(jù)余弦定理得 a2=b2+c2-2bccos A=(b+c)2-2bc-2bcc
17、os A=36-10-10×=20, ∴a=2. 3.在△ABC中,內(nèi)角A,B,C所對(duì)邊長(zhǎng)分別為a,b,c,=8,∠BAC=θ,a=4. (1)求b·c的最大值及θ的取值范圍; (2)求函數(shù)f(θ)=2sin2(+θ)+2cos2θ-的值. 【解析】(1)∵=8,∠BAC=θ,∴bccosθ=8. 又a=4,∴b2+c2-2bccosθ=42 即b2+c2=32. 又b2+c2≥2bc ∴bc≤16,即bc的最大值為16. 而bc=,∴≤16,∴cosθ≥ ∵0<θ<π,∴0<θ≤. (2)f(θ)=2sin2(+θ)+2cos2θ-=[1-cos(+2θ)]+1+c
18、os2θ- =sin2θ+cos2θ+1=2sin(2θ+)+1 ∵0<θ≤, ∴<2θ+≤ ∴≤sin(2θ+)≤1. 當(dāng)2θ+=,即θ=時(shí),f(θ)min=2×+1=2. 當(dāng)2θ+=,即θ=時(shí),f(θ)max=2×1+1=3. 點(diǎn)評(píng) 有關(guān)三角形中的三角函數(shù)求值問題,既要注意內(nèi)角的范圍,又要靈活利用基本不等式. 題型三 正、余弦定理的綜合應(yīng)用 例3 (xx·浙江)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知sin A+sin C=psin B (p∈R),且ac=b2. (1)當(dāng)p=,b=1時(shí),求a,c的值; (2)若角B為銳角,求p的取值范圍.
19、解 (1)由題設(shè)并由正弦定理,
得 解得或
(2)由余弦定理,b2=a2+c2-2accos B
=(a+c)2-2ac-2accos B=p2b2-b2-b2cos B,即p2=+cos B.
因?yàn)?
20、ABC的形狀.
解 (1)∵c=2,C=,∴由余弦定理c2=a2+b2-2abcos C
得a2+b2-ab=4.
又∵△ABC的面積為,∴absin C=,ab=4.
聯(lián)立方程組解得a=2,b=2.
(2)由sin C+sin(B-A)=sin 2A,得sin(A+B)+sin(B-A)=2sin Acos A,
即2sin Bcos A=2sin Acos A,∴cos A·(sin A-sin B)=0,
∴cos A=0或sin A-sin B=0,當(dāng)cos A=0時(shí),∵0
21、 A,由正弦定理得a=b,
即△ABC為等腰三角形.∴△ABC為等腰三角形或直角三角形.
2. ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,asinAsinB+bcos2A= a
⑴ ⑵若c2=b2+ a2求B.
解: (1)由正弦定理得,sin2Asin B+sin Bcos2A
=sin A,即sin B(sin2A+cos2A)=sin A.
故sin B=sin A,所以=.
(2)由余弦定理和c2=b2+a2,得cos B=.
由(1)知b2=2a2,故c2=(2+)a2.
可得cos2B=,又cos B>0,故cos B=,所以B=45°.
題型 22、四 判斷三角形的形狀
一、判斷三角形的形狀
例1在△ABC中,a、b、c分別是三內(nèi)角A、B、C的對(duì)邊,已知2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求角A的大小;
(2)若sinB+sinC=1,試判斷△ABC的形狀.
解析 (1)由已知得:2a2=(2b+c)b+(2c+b)c.
即a2=b2+c2+bc
由余弦定理得:a2=b2+c2-2bccosA ∴cosA=-
∵A∈(0°,180°),∴A=120°.
(2)由(1)得:sin2A=sin2B+sin2C+sinBsinC
又sinB+sinC=1得sinB=sinC=
∵0°
23、60°,0° 24、n Acos B.
方法一 由正弦定理知a=2Rsin A,b=2Rsin B,
∴sin2Acos Asin B=sin2Bsin Acos B,
又sinA·sin B≠0,∴sin Acos A=sin Bcos B,
∴sin 2A=sin 2B.
在△ABC中,0<2A<2π,0<2B<2π,
∴2A=2B或2A=π-2B,∴A=B或A+B=.
∴△ABC為等腰或直角三角形.
方法二 由正弦定理、余弦定理得:
a2b=b2a,
∴a2(b2+c2-a2)=b2(a2+c2-b2 25、),
∴(a2-b2)(a2+b2-c2)=0,
∴a2-b2=0或a2+b2-c2=0.
即a=b或a2+b2=c2.∴△ABC為等腰或直角三角形.
變式訓(xùn)練4 1.已知在△ABC中,,則△ABC的形狀是
解析:∵cos2=,∴=.
∴cos A=. 又∵=,即b2+c2-a2=2b2. ∴a2+b2=c2.
∴△ABC為直角三角形.
探究提高 利用正弦、余弦定理判斷三角形形狀時(shí),對(duì)所給的邊角關(guān)系式一般都要先化為純粹的邊之間的關(guān)系或純粹的角之間的關(guān)系,再判斷.
2. 設(shè)△ABC的內(nèi)角A、B、C的對(duì) 26、邊長(zhǎng)分別為a、b、c,
且3b2+3c2-3a2=4bc.
(1)求sin A的值;
(2)求的值.
解 (1)∵3b2+3c2-3a2=4bc,∴b2+c2-a2=bc.
由余弦定理得,cos A==,
又0
27、可以減少角的種數(shù).
3.根據(jù)所給條件確定三角形的形狀,主要有兩種途徑:(1)化邊為角;(2)化角為邊,
練題一
一、選擇題
1.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c.若acosA=bsinB,則sinAcosA+cos2B=( )
A.- B. C.-1 D.1
【解析】根據(jù)正弦定理,由acosA=bsinB得sinAcosA=sin2B.
∴sinAcosA+cos2B=sin2B+cos2B=1,故選D.
2.在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,若a=2bcos C,則此三角形一定是 28、 ( )
A.等腰直角三角形 B.直角三角形
C.等腰三角形 D.等腰三角形或直角三角形
3.在△ABC中,若∠A=60°,b=1,S△ABC=,則的值為( )
A. B. C. D.
4.若△ABC的內(nèi)角A、B、C滿足6sinA=4sinB=3sinC,則cosB=( )
A. B. C. D.
【解析】結(jié)合正弦定理得:6a=4b=3c
設(shè)3c=12k(k>0) 則a=2k,b=3k,c=4k.
由余弦定理得cosB===,選D.
5.若△ABC的內(nèi)角A、B、C所對(duì)的邊a,b,c滿足(a 29、+b)2-c2=4且C=60°,則ab的值為( )
A. B.8-4 C.1 D.
【解析】由已知得:
兩式相減得:ab=,選A.
二、填空題
6.在△ABC中,若b=5,∠B=,sin A=,則a=________.
7.若△ABC的面積為,BC=2,C=60°,則邊AB的長(zhǎng)度等于____2____.
8.在△ABC中,若AB=,AC=5,且cos C=,則BC=________.4或5.
9.已知△ABC的一個(gè)內(nèi)角為120°,且三邊長(zhǎng)構(gòu)成公差為4的等差數(shù)列,則△ABC的面積為 .
【解析】不妨設(shè)A=120°,c
30、a=b+4,c=b-4
∴cos120°==-
解得:b=10. ∴S△ABC=bcsin120°=15.
三、解答題
10.已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,A是銳角,且b=2a·sin B.
(1)求A;
(2)若a=7,△ABC的面積為10,求b2+c2的值.
解 (1)∵b=2a·sin B,由正弦定理知 sin B=2sin A·sin B.
∵B是三角形的內(nèi)角,∴sin B>0,從而有sin A=,
∴A=60°或120°,∵A是銳角,∴A=60°.
(2)∵10=bcsin 60°,∴bc=40,
又72=b2+c2-2bcc 31、os 60°,∴b2+c2=89.
11.在△ABC中,內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c.已知a2-c2=2b,且sin B=4cos Asin C,求b.
解 方法一 ∵sin B=4cos Asin C,
由正弦定理,得=4cos A,∴b=4ccos A,
由余弦定理得b=4c·,
∴b2=2(b2+c2-a2),∴b2=2(b2-2b),∴b=4.
方法二 由余弦定理,得a2-c2=b2-2bccos A,
∵a2-c2=2b,b≠0,∴b=2ccos A+2, ①
由正弦定理,得=,又由已知得,=4cos A,
∴b=4ccos A. ② 解 32、①②得b=4.
12.在△ABC中,A,B為銳角,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且cos2A=,sinB=. (1)求A+B的值;
(2)若a-b=-1,求a,b,c的值.
【解析】(1)∵A,B為銳角,且sinB= ∴cosB==
又cos2A=1-2sin2A=
∴sinA=,cosA==
∴cos(A+B)=cosAcosB-sinAsinB=×-×=
又∵0
33、BC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知=.
(1)求的值;
(2)若cosB=,△ABC的周長(zhǎng)為5,求b的長(zhǎng).
【解析】(1)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,
所以==,
即sinBcosA-2sinBcosC=2sinCcosB-sinAcosB,
即有sin(A+B)=2sin(B+C),即sinC=2sinA,
所以=2.
(2)由(1)知=2,所以有=2,即c=2a,
又因?yàn)橹荛L(zhǎng)為5,所以b=5-3a,
由余弦定理得:b2=c2+a2-2accosB,
即(5-3a)2=(2a)2+a2-4a2×,
解得a=1,所以 34、b=2.
練習(xí)2
一、選擇題
1.在△ABC中,sin2A≤sin2B+sin2C-sinB·sinC,則A的取值范圍是( )
A.(0,] B.[,π) C.(0,] D.[,π)
【解析】由已知得:a2≤b2+c2-bc
由余弦定理得:a2=b2+c2-2bccosA ∴b2+c2-2bccosA≤b2+c2-bc
∴cosA≥ ∵A∈(0,π),∴A∈(0,],選C.
2.如圖,在△ABC中,D是邊AC上的點(diǎn),
且AB=AD,2AB=BD,BC=2BD,則sin C的值
為 ( )
A. B. 35、 C. D.
3.在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c.若∠C=120°,c=a,則 ( )
A.a>b B.a
36、積S=(b2+c2-a2),則A=___ _____
7.在銳角△ABC中,BC=1,B=2A,則的值等于____,AC的取值范圍為 .
【解析】由正弦定理得:=,即=,
∴=,則=2.
又△ABC為銳角三角形,∴A+B=3A>90°,B=2A<90°
∴30°
37、1)由已知,根據(jù)正弦定理得2a2=(2b+c)b+(2c+b)c,
即a2=b2+c2+bc. ①
由余弦定理得a2=b2+c2-2bccos A,
故cos A=-,又∵0°
38、9.在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,
4sin2-cos 2A=.
(1)求∠A的度數(shù);
(2)若a=,b+c=3,求b、c的值.
解 (1)∵B+C=π-A,即=-,
由4sin2-cos 2A=,得4cos2-cos 2A=,
即2(1+cos A)-(2cos2A-1)=,
整理得4cos2A-4cos A+1=0,即(2cos A-1)2=0.
∴cos A=,又0°
39、 ③
① -③整理得:bc=2. ④
解②④聯(lián)立方程組得或
10.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,其中b=,tanA+tanC+tan=tanA·tanC·tan.
(1)求角B的大?。?
(2)求a+c的取值范圍.
解析 (1)tan(A+C)=
==-, ∴A+C=,∴B=.
(2)由正弦定理有2R====1,
∵a+c=2R(sinA+sinC)=sinA+sinC
=sinA+sin(π-A)=sinA+cosA=sin(A+)
又由0<A<π,有<A+<π,
∴<a+c≤,即a+c的取值范圍是(,].
11.在△ABC中,a、b、c分別 40、為角A、B、C所對(duì)的邊,a=2,tan+tan=4,sinB·sinC=cos2,求A、B及b、c.
【解析】由tan+tan=4,得cot+tan=4,即+=4,
所以=4,所以=2,
所以sinC=,又C∈(0,π),所以C=或,
由sinB·sinC=cos2,得sinB·sinC=[1-cos(B+C)],
即2sinB·sinC=1-cosB·cosC+sinB·sinC,
所以cosB·cosC+sinB·sinC=1,即cos(B-C)=1,
所以B=C=, A=π-(B+C)=,
由正弦定理==得, b=c=a·=2×=2.
12.若tanC=,c=,試求ab 41、的最大值.
(2)∵tanC=tan[π-(A+B)]=-tan(A+B)
∴-=
即sin(A+B)cosA+sin(A+B)cosB+cos(A+B)sinA+cos(A+B)sinB=0
即sin(2A+B)+sin(A+2B)=0.
∴2A+B=-(A+2B)+2kπ(k∈Z)
或(2A+B)-(A+2B)=π+2kπ(k∈Z)
∵A,B為△ABC的內(nèi)角,∴A+B=,即C=.
又c=,
由余弦定理c2=a2+b2-2abcosC
得:3+ab=a2+b2≥2ab
∴ab≤3,當(dāng)且僅當(dāng)a=b時(shí)“=”成立.
故ab的最大值為3.
13.在△ABC中,AC=1,∠A 42、BC=,∠BAC=x,記f(x)=.
(1)求函數(shù)f(x)的解析式及定義域;
(2)設(shè)g(x)=6m·f(x)+1,x∈(0,),是否存在正實(shí)數(shù)m,使函數(shù)g(x)的值域?yàn)?1,]?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說明理由.
【解析】(1)由正弦定理===,
得BC=sinx,AB=sin(-x),
∴f(x)==AB·BCcos(π-∠ABC)
=sinx·sin(-x)·
=(cosx-sinx)·sinx
=sin(2x+)-,其定義域?yàn)?0,).
(2)g(x)=6mf(x)+1=2msin(2x+)-m+1(0<x<),
假設(shè)存在正實(shí)數(shù)m滿足題設(shè).
∵0<x<, 43、∴<2x+<,則sin(2x+)∈(,1].
又m>0,則函數(shù)g(x)的值域?yàn)?1,m+1],
而g(x)的值域?yàn)?1,],故m+1=,∴m=.
故存在正實(shí)數(shù)m=使函數(shù)g(x)的值域?yàn)?1,].
14在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知向量p=(c-2a,b),q=(cosB,cosC),p⊥q.
(1)求角B的大?。?
(2)若b=2,求△ABC面積的最大值.
解析 (1)由p⊥q得:(c-2a)cosB+bcosC=0
由正弦定理得,sinCcosB-2sinAcosB+sinBcosC=0
∴sin(C+B)=2sinAcosB
∵B+C=π-A ∴sin(C+B)=sinA且sinA>0
∴sinA=2sinAcosB,cosB=
又B∈(0,π),∴B=.
(2)由余弦定理得,b2=a2+c2-2accosB
=a2+c2-ac≥ac
當(dāng)且僅當(dāng)a=c時(shí)“=”成立.
又b=2,∴ac≤12. ∴S△ABC=acsinB≤×12×=3,
當(dāng)且僅當(dāng)a=c=2時(shí),S△ABC的最大值為3.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第7課時(shí)圖形的位置練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第1課時(shí)圖形的認(rèn)識(shí)與測(cè)量1平面圖形的認(rèn)識(shí)練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時(shí)比和比例2作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)4比例1比例的意義和基本性質(zhì)第3課時(shí)解比例練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第7課時(shí)圓柱的體積3作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)1負(fù)數(shù)第1課時(shí)負(fù)數(shù)的初步認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末豐收?qǐng)@作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十二課件新人教版
- 標(biāo)準(zhǔn)工時(shí)講義
- 2021年一年級(jí)語文上冊(cè)第六單元知識(shí)要點(diǎn)習(xí)題課件新人教版
- 2022春一年級(jí)語文下冊(cè)課文5識(shí)字測(cè)評(píng)習(xí)題課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時(shí)數(shù)學(xué)思考1練習(xí)課件新人教版