2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 正弦定理和余弦定理教案 新人教A版

上傳人:xt****7 文檔編號(hào):105350349 上傳時(shí)間:2022-06-11 格式:DOC 頁(yè)數(shù):17 大小:190.02KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 正弦定理和余弦定理教案 新人教A版_第1頁(yè)
第1頁(yè) / 共17頁(yè)
2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 正弦定理和余弦定理教案 新人教A版_第2頁(yè)
第2頁(yè) / 共17頁(yè)
2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 正弦定理和余弦定理教案 新人教A版_第3頁(yè)
第3頁(yè) / 共17頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 正弦定理和余弦定理教案 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 正弦定理和余弦定理教案 新人教A版(17頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué)一輪復(fù)習(xí)講義 正弦定理和余弦定理教案 新人教A版 自主梳理 1. 正弦定理:____=______=___=2R,其中R是三角形外接圓的半徑. 由正弦定理可以變形為:(1)a∶b∶c=____ sin A∶sin B∶sin C _____; (2)a=___)2Rsin A _____,b=__2Rsin B _____,c=__2Rsin C ___; (3)sin A=_______,sin B=______,sin C=_______等形式,以解決不同的三角形問(wèn)題. 2.余弦定理:a2=__ b2+c2-2bccos A ________,b2=__ a2

2、+c2-2accos B _____, c2=____ a2+b2-2abcos C ____. 余弦定理可以變形為:cos A=___________,cos B=_________, cos C=_________. 3.S△ABC=absin C=bcsin A=acsin B==(a+b+c)·r(r是三角形內(nèi)切圓的半徑),并可由此計(jì)算R、r. 4.在解三角形時(shí),正弦定理可解決兩類問(wèn)題:(1)已知兩角及任一邊,求其它邊或角;(2)已知兩邊及一邊的對(duì)角,求其它邊或角.情況(2)中結(jié)果可能有一解、二解、無(wú)解,應(yīng)注意區(qū)分. 余弦定理可解決兩類問(wèn)題: (1)已知兩邊及夾角或兩邊及一

3、邊對(duì)角的問(wèn)題;(2)已知三邊問(wèn)題. 解三角形時(shí),三角形解的個(gè)數(shù)的判斷 在△ABC中,已知a、b和A時(shí),解的情況如下: A為銳角 A為鈍角或直角 圖形 關(guān)系式 a=bsin A bsin Ab 解的個(gè)數(shù) 一解 兩解 一解 一解 5.判斷三角形的形狀特征 必須從研究三角形的邊角關(guān)系入手,充分利用正、余弦定理進(jìn)行轉(zhuǎn)化,即化邊為角或化角為邊,邊角統(tǒng)一. ①等腰三角形:a=b或A=B. ②直角三角形: b2+c2=a2 或 A=90° . ③鈍角三角形: a2>b2+c2

4、 或 A>90° . ④銳角三角形:若a為最大邊,且滿足 a2<b2+c2 或A為最大角,且 A<90° . 6.由正弦定理容易得到:在三角形中,大角對(duì)大邊,大邊對(duì)大角;大角的正弦值也較大,正弦值較大的角也較大,即A>B?a>b?sinA>sinB. 基礎(chǔ)自測(cè) 1.在△ABC中,若A=60°,a=,則=________. 2.(xx·北京)在△ABC中,若b=1,c=,C=,則a=________. 3.在△ABC中,a=15,b=10,A=60°,則cos B=________. 4.△ABC的三個(gè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、

5、b、c,已知c=3,C=,a=2b,則b的值為_(kāi)_______. 5.已知圓的半徑為4,a、b、c為該圓的內(nèi)接三角形的三邊,若abc=16,則三角形的面積為 (  ) A.2 B.8 C. D. 1.2 2.1 3. 4. 5.C 6.在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,若a、b、c成等差數(shù)列,B=30°,△ABC的面積為,則b= . 【解析】∵S△ABC=acsinB=acsin30°=,∴ac=6. 又a、b、c成等差數(shù)列,故2b=a+c. 由余弦定理得b2=a2+c2-2accosB

6、 =(a+c)2-2ac-2accos30°, ∴b2=4b2-12-6,得b2=4+2,∴b=1+. 7.在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,若a=2bcosC,則此三角形一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等腰三角形或直角三角形 【解析】由a=2bcosC得sinA=2sinBcosC ∵A+B+C=π ∴sinA=sin(B+C) ∴sin(B+C)=2sinBcosC 即sin(B-C)=0 ∵0

7、q:△ABC是等邊三角形,則命題p是命題q的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 【解析】∵==,由正弦定理知:==. ∴sinB=sinA=sinC ∴A=B=C?a=b=c,∴p?q 又若a=b=c,則A=B=C=60°?sinA=sinB=sinC. ∴==,∴q?p. 題型一 利用正弦定理求解三角形及有關(guān)三角形中的三角函數(shù)的范圍(最值) 例1?、旁凇鰽BC中,a=,b=,B=45°.求角A、C和邊c. (2)在△ABC中,a=8,B=60°,C=75°,求邊b和c. 解 (1)由正弦定

8、理得=, =,∴sin A=. ∵a>b,∴A=60°或A=120°. 當(dāng)A=60°時(shí),C=180°-45°-60°=75°,c==; 當(dāng)A=120°時(shí),C=180°-45°-120°=15°,c==. (2)∵B=60°,C=75°,∴A=45°.由正弦定理==, 得b==4,c==4+4.∴b=4,c=4+4. (2)設(shè)銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a=2bsinA. ①求角B的大??; ②求cosA+sinC的取值范圍. 解析 ①由a=2bsinA,根據(jù)正弦定理得sinA=2sinBsinA, 所以sinB=,由△ABC為銳角三角形得B=

9、. ②cosA+sinC=cosA+sin(π--A)=cosA+sin(+A) =cosA+cosA+sinA=sin(A+). 由△ABC為銳角三角形知,>A>-B,又-B=-=. ∴<A+<,∴<sin(A+)<. 由此有<sin(A+)<×=,所以cosA+sinC的取值范圍為(,). 點(diǎn)評(píng) 解決這類問(wèn)題的關(guān)鍵是利用正弦定理和余弦定理,要么把角化成邊,要么把邊化成角,然后再進(jìn)行三角恒等變換得到y(tǒng)=Asin(ωx+φ)+B型函數(shù),從而求解單調(diào)區(qū)間、最值、參數(shù)范圍等問(wèn)題,注意限制條件A+B+C=π,0<A,B,C<π的應(yīng)用,如本題中由△ABC為銳角三角形得到A+B>,從而推

10、到<A+<. 探究提高 (1)已知兩角一邊可求第三角,解這樣的三角形只需直接用正弦定理代入求解即可. (2)已知兩邊和一邊對(duì)角,解三角形時(shí),利用正弦定理求另一邊的對(duì)角時(shí)要注意討論該角,這是解題的難點(diǎn),應(yīng)引起注意. 變式訓(xùn)練1 (1) 已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若a=1,b=,A+C=2B,則角A的大小為_(kāi)_______. (2)在△ABC中,若tan A=,C=150°,BC=1,則AB=________; (3)在△ABC中,若a=50,b=25,A=45°,則B=______ 解析 (2)∵在△ABC中,tan A=,C=150°

11、, ∴A為銳角,∴sin A=.又∵BC=1. ∴根據(jù)正弦定理得AB==. (3)由b>a,得B>A,由=, 得sin B==×=, ∵0°

12、cos(B+)=sinA-cos(π-A) =sinA+cosA=2sin(A+). ∵0<A<,∴<A+<, 從而當(dāng)A+=,即A=時(shí),2sin(A+)取最大值2. 綜上所述,sinA-cos(B+)的最大值為2, 此時(shí)A=,B=. (5)如圖,已知△ABC是邊長(zhǎng)為1的正三角形,M、N分別是邊AB、AC上的點(diǎn),線段MN經(jīng)過(guò)△ABC的重心G.設(shè)∠MGA=α(≤α≤). ①試將△AGM、△AGN的面積(分別記為S1與S2)表示為α的函數(shù); ②求y=+的最大值與最小值. 解析①因?yàn)镚是邊長(zhǎng)為1的正三角形ABC的重心, 所以AG=×=,∠MAG=, 由正弦定理=,得GM=.

13、 則S1=GM·GA·sinα=(或). 又=,得GN=, 則S2=GN·GA·sin(π-α) =(或), ②y=+=·[sin2(α+)+sin2(α-)]=72(3+cot2α). 因?yàn)椤堞痢埽?,?dāng)α=或α=時(shí),y取得最大值ymax=240; 當(dāng)α=時(shí),y取得最小值ymin=216. 題型二 利用余弦定理求解三角形 例2 在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,且=-. (1)求角B的大小; (2)若b=,a+c=4,求△ABC的面積.  解 (1)由余弦定理知: cos B=,cos C=. 將上式代入=-得: ·=-, 整理得:a2+c2

14、-b2=-ac.∴cos B===-. ∵B為三角形的內(nèi)角,∴B=π. (2)將b=,a+c=4,B=π代入b2=a2+c2-2accos B, 得b2=(a+c)2-2ac-2accos B,∴13=16-2ac,∴ac=3. ∴S△ABC=acsin B=. 探究提高 (1)根據(jù)所給等式的結(jié)構(gòu)特點(diǎn)利用余弦定理將角化邊進(jìn)行變形是迅速解答本題的關(guān)鍵. (2)熟練運(yùn)用余弦定理及其推論,同時(shí)還要注意整體思想、方程思想在解題過(guò)程中的運(yùn)用. 變式訓(xùn)練2  1.已知a、b、c分別是△ABC中角A、B、C的對(duì)邊,且a2+c2-b2=ac. (1)求角B的大??; (2)若c=3a,求t

15、an A的值. 解 (1)∵a2+c2-b2=ac,∴cos B==. ∵0a,∴B>A,∴cos A==. ∴tan A==. 方法三 ∵c=3a,由正弦定理,得sin C=3sin A. ∵B=,∴C=π-(A+B)=-A,∴sin(-A)=3sin A, ∴s

16、incos A-cossin A=3sin A,∴cos A+sin A=3sin A, ∴5sin A=cos A,∴tan A==. 2.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足cos =,  ·=3. (1)求△ABC的面積; (2)若b+c=6,求a的值.  解 (1)∵cos =,∴cos A=2cos2-1=, ∴sin A=.又·=3,∴bccos A=3,∴bc=5. ∴S△ABC=bcsin A=×5×=2. (2)由(1)知,bc=5,又b+c=6, 根據(jù)余弦定理得 a2=b2+c2-2bccos A=(b+c)2-2bc-2bcc

17、os A=36-10-10×=20, ∴a=2. 3.在△ABC中,內(nèi)角A,B,C所對(duì)邊長(zhǎng)分別為a,b,c,=8,∠BAC=θ,a=4. (1)求b·c的最大值及θ的取值范圍; (2)求函數(shù)f(θ)=2sin2(+θ)+2cos2θ-的值. 【解析】(1)∵=8,∠BAC=θ,∴bccosθ=8. 又a=4,∴b2+c2-2bccosθ=42 即b2+c2=32. 又b2+c2≥2bc ∴bc≤16,即bc的最大值為16. 而bc=,∴≤16,∴cosθ≥ ∵0<θ<π,∴0<θ≤. (2)f(θ)=2sin2(+θ)+2cos2θ-=[1-cos(+2θ)]+1+c

18、os2θ- =sin2θ+cos2θ+1=2sin(2θ+)+1 ∵0<θ≤, ∴<2θ+≤ ∴≤sin(2θ+)≤1. 當(dāng)2θ+=,即θ=時(shí),f(θ)min=2×+1=2. 當(dāng)2θ+=,即θ=時(shí),f(θ)max=2×1+1=3. 點(diǎn)評(píng) 有關(guān)三角形中的三角函數(shù)求值問(wèn)題,既要注意內(nèi)角的范圍,又要靈活利用基本不等式. 題型三 正、余弦定理的綜合應(yīng)用 例3 (xx·浙江)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知sin A+sin C=psin B (p∈R),且ac=b2. (1)當(dāng)p=,b=1時(shí),求a,c的值; (2)若角B為銳角,求p的取值范圍.

19、解 (1)由題設(shè)并由正弦定理, 得 解得或 (2)由余弦定理,b2=a2+c2-2accos B =(a+c)2-2ac-2accos B=p2b2-b2-b2cos B,即p2=+cos B. 因?yàn)?0,所以

20、ABC的形狀. 解 (1)∵c=2,C=,∴由余弦定理c2=a2+b2-2abcos C 得a2+b2-ab=4. 又∵△ABC的面積為,∴absin C=,ab=4. 聯(lián)立方程組解得a=2,b=2. (2)由sin C+sin(B-A)=sin 2A,得sin(A+B)+sin(B-A)=2sin Acos A, 即2sin Bcos A=2sin Acos A,∴cos A·(sin A-sin B)=0, ∴cos A=0或sin A-sin B=0,當(dāng)cos A=0時(shí),∵0

21、 A,由正弦定理得a=b, 即△ABC為等腰三角形.∴△ABC為等腰三角形或直角三角形. 2. ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,asinAsinB+bcos2A= a ⑴ ⑵若c2=b2+ a2求B. 解: (1)由正弦定理得,sin2Asin B+sin Bcos2A =sin A,即sin B(sin2A+cos2A)=sin A. 故sin B=sin A,所以=. (2)由余弦定理和c2=b2+a2,得cos B=. 由(1)知b2=2a2,故c2=(2+)a2. 可得cos2B=,又cos B>0,故cos B=,所以B=45°. 題型

22、四 判斷三角形的形狀 一、判斷三角形的形狀 例1在△ABC中,a、b、c分別是三內(nèi)角A、B、C的對(duì)邊,已知2asinA=(2b+c)sinB+(2c+b)sinC. (1)求角A的大?。? (2)若sinB+sinC=1,試判斷△ABC的形狀. 解析 (1)由已知得:2a2=(2b+c)b+(2c+b)c. 即a2=b2+c2+bc 由余弦定理得:a2=b2+c2-2bccosA ∴cosA=- ∵A∈(0°,180°),∴A=120°. (2)由(1)得:sin2A=sin2B+sin2C+sinBsinC 又sinB+sinC=1得sinB=sinC= ∵0°

23、60°,0°

24、n Acos B. 方法一 由正弦定理知a=2Rsin A,b=2Rsin B, ∴sin2Acos Asin B=sin2Bsin Acos B, 又sinA·sin B≠0,∴sin Acos A=sin Bcos B, ∴sin 2A=sin 2B. 在△ABC中,0<2A<2π,0<2B<2π, ∴2A=2B或2A=π-2B,∴A=B或A+B=. ∴△ABC為等腰或直角三角形. 方法二 由正弦定理、余弦定理得: a2b=b2a, ∴a2(b2+c2-a2)=b2(a2+c2-b2

25、), ∴(a2-b2)(a2+b2-c2)=0, ∴a2-b2=0或a2+b2-c2=0. 即a=b或a2+b2=c2.∴△ABC為等腰或直角三角形. 變式訓(xùn)練4 1.已知在△ABC中,,則△ABC的形狀是 解析:∵cos2=,∴=. ∴cos A=. 又∵=,即b2+c2-a2=2b2. ∴a2+b2=c2. ∴△ABC為直角三角形. 探究提高 利用正弦、余弦定理判斷三角形形狀時(shí),對(duì)所給的邊角關(guān)系式一般都要先化為純粹的邊之間的關(guān)系或純粹的角之間的關(guān)系,再判斷. 2. 設(shè)△ABC的內(nèi)角A、B、C的對(duì)

26、邊長(zhǎng)分別為a、b、c, 且3b2+3c2-3a2=4bc. (1)求sin A的值; (2)求的值. 解 (1)∵3b2+3c2-3a2=4bc,∴b2+c2-a2=bc. 由余弦定理得,cos A==, 又0

27、可以減少角的種數(shù). 3.根據(jù)所給條件確定三角形的形狀,主要有兩種途徑:(1)化邊為角;(2)化角為邊, 練題一 一、選擇題 1.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c.若acosA=bsinB,則sinAcosA+cos2B=( ) A.-    B.       C.-1        D.1 【解析】根據(jù)正弦定理,由acosA=bsinB得sinAcosA=sin2B. ∴sinAcosA+cos2B=sin2B+cos2B=1,故選D. 2.在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,若a=2bcos C,則此三角形一定是

28、 (  ) A.等腰直角三角形   B.直角三角形 C.等腰三角形      D.等腰三角形或直角三角形 3.在△ABC中,若∠A=60°,b=1,S△ABC=,則的值為(  ) A. B.      C. D.   4.若△ABC的內(nèi)角A、B、C滿足6sinA=4sinB=3sinC,則cosB=( ) A. B. C. D. 【解析】結(jié)合正弦定理得:6a=4b=3c 設(shè)3c=12k(k>0) 則a=2k,b=3k,c=4k. 由余弦定理得cosB===,選D. 5.若△ABC的內(nèi)角A、B、C所對(duì)的邊a,b,c滿足(a

29、+b)2-c2=4且C=60°,則ab的值為( ) A. B.8-4 C.1 D. 【解析】由已知得: 兩式相減得:ab=,選A. 二、填空題 6.在△ABC中,若b=5,∠B=,sin A=,則a=________. 7.若△ABC的面積為,BC=2,C=60°,則邊AB的長(zhǎng)度等于____2____. 8.在△ABC中,若AB=,AC=5,且cos C=,則BC=________.4或5. 9.已知△ABC的一個(gè)內(nèi)角為120°,且三邊長(zhǎng)構(gòu)成公差為4的等差數(shù)列,則△ABC的面積為 . 【解析】不妨設(shè)A=120°,c

30、a=b+4,c=b-4 ∴cos120°==- 解得:b=10. ∴S△ABC=bcsin120°=15. 三、解答題 10.已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,A是銳角,且b=2a·sin B. (1)求A; (2)若a=7,△ABC的面積為10,求b2+c2的值. 解 (1)∵b=2a·sin B,由正弦定理知 sin B=2sin A·sin B. ∵B是三角形的內(nèi)角,∴sin B>0,從而有sin A=, ∴A=60°或120°,∵A是銳角,∴A=60°. (2)∵10=bcsin 60°,∴bc=40, 又72=b2+c2-2bcc

31、os 60°,∴b2+c2=89. 11.在△ABC中,內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c.已知a2-c2=2b,且sin B=4cos Asin C,求b. 解 方法一 ∵sin B=4cos Asin C, 由正弦定理,得=4cos A,∴b=4ccos A, 由余弦定理得b=4c·, ∴b2=2(b2+c2-a2),∴b2=2(b2-2b),∴b=4. 方法二 由余弦定理,得a2-c2=b2-2bccos A, ∵a2-c2=2b,b≠0,∴b=2ccos A+2, ① 由正弦定理,得=,又由已知得,=4cos A, ∴b=4ccos A. ② 解

32、①②得b=4. 12.在△ABC中,A,B為銳角,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且cos2A=,sinB=. (1)求A+B的值; (2)若a-b=-1,求a,b,c的值. 【解析】(1)∵A,B為銳角,且sinB= ∴cosB== 又cos2A=1-2sin2A= ∴sinA=,cosA== ∴cos(A+B)=cosAcosB-sinAsinB=×-×= 又∵0

33、BC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知=. (1)求的值; (2)若cosB=,△ABC的周長(zhǎng)為5,求b的長(zhǎng). 【解析】(1)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC, 所以==, 即sinBcosA-2sinBcosC=2sinCcosB-sinAcosB, 即有sin(A+B)=2sin(B+C),即sinC=2sinA, 所以=2. (2)由(1)知=2,所以有=2,即c=2a, 又因?yàn)橹荛L(zhǎng)為5,所以b=5-3a, 由余弦定理得:b2=c2+a2-2accosB, 即(5-3a)2=(2a)2+a2-4a2×, 解得a=1,所以

34、b=2. 練習(xí)2 一、選擇題 1.在△ABC中,sin2A≤sin2B+sin2C-sinB·sinC,則A的取值范圍是( ) A.(0,] B.[,π) C.(0,] D.[,π) 【解析】由已知得:a2≤b2+c2-bc 由余弦定理得:a2=b2+c2-2bccosA ∴b2+c2-2bccosA≤b2+c2-bc ∴cosA≥ ∵A∈(0,π),∴A∈(0,],選C. 2.如圖,在△ABC中,D是邊AC上的點(diǎn), 且AB=AD,2AB=BD,BC=2BD,則sin C的值 為 (  ) A. B.

35、 C. D. 3.在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c.若∠C=120°,c=a,則 (  ) A.a>b B.a

36、積S=(b2+c2-a2),則A=___ _____ 7.在銳角△ABC中,BC=1,B=2A,則的值等于____,AC的取值范圍為 . 【解析】由正弦定理得:=,即=, ∴=,則=2. 又△ABC為銳角三角形,∴A+B=3A>90°,B=2A<90° ∴30°

37、1)由已知,根據(jù)正弦定理得2a2=(2b+c)b+(2c+b)c, 即a2=b2+c2+bc. ① 由余弦定理得a2=b2+c2-2bccos A, 故cos A=-,又∵0°

38、9.在△ABC中,a、b、c分別為角A、B、C的對(duì)邊, 4sin2-cos 2A=. (1)求∠A的度數(shù); (2)若a=,b+c=3,求b、c的值. 解 (1)∵B+C=π-A,即=-, 由4sin2-cos 2A=,得4cos2-cos 2A=, 即2(1+cos A)-(2cos2A-1)=, 整理得4cos2A-4cos A+1=0,即(2cos A-1)2=0. ∴cos A=,又0°

39、 ③ ① -③整理得:bc=2. ④ 解②④聯(lián)立方程組得或 10.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,其中b=,tanA+tanC+tan=tanA·tanC·tan. (1)求角B的大??; (2)求a+c的取值范圍. 解析 (1)tan(A+C)= ==-, ∴A+C=,∴B=. (2)由正弦定理有2R====1, ∵a+c=2R(sinA+sinC)=sinA+sinC =sinA+sin(π-A)=sinA+cosA=sin(A+) 又由0<A<π,有<A+<π, ∴<a+c≤,即a+c的取值范圍是(,]. 11.在△ABC中,a、b、c分別

40、為角A、B、C所對(duì)的邊,a=2,tan+tan=4,sinB·sinC=cos2,求A、B及b、c. 【解析】由tan+tan=4,得cot+tan=4,即+=4, 所以=4,所以=2, 所以sinC=,又C∈(0,π),所以C=或, 由sinB·sinC=cos2,得sinB·sinC=[1-cos(B+C)], 即2sinB·sinC=1-cosB·cosC+sinB·sinC, 所以cosB·cosC+sinB·sinC=1,即cos(B-C)=1, 所以B=C=, A=π-(B+C)=, 由正弦定理==得, b=c=a·=2×=2. 12.若tanC=,c=,試求ab

41、的最大值. (2)∵tanC=tan[π-(A+B)]=-tan(A+B) ∴-= 即sin(A+B)cosA+sin(A+B)cosB+cos(A+B)sinA+cos(A+B)sinB=0 即sin(2A+B)+sin(A+2B)=0. ∴2A+B=-(A+2B)+2kπ(k∈Z) 或(2A+B)-(A+2B)=π+2kπ(k∈Z) ∵A,B為△ABC的內(nèi)角,∴A+B=,即C=. 又c=, 由余弦定理c2=a2+b2-2abcosC 得:3+ab=a2+b2≥2ab ∴ab≤3,當(dāng)且僅當(dāng)a=b時(shí)“=”成立. 故ab的最大值為3. 13.在△ABC中,AC=1,∠A

42、BC=,∠BAC=x,記f(x)=. (1)求函數(shù)f(x)的解析式及定義域; (2)設(shè)g(x)=6m·f(x)+1,x∈(0,),是否存在正實(shí)數(shù)m,使函數(shù)g(x)的值域?yàn)?1,]?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說(shuō)明理由. 【解析】(1)由正弦定理===, 得BC=sinx,AB=sin(-x), ∴f(x)==AB·BCcos(π-∠ABC) =sinx·sin(-x)· =(cosx-sinx)·sinx =sin(2x+)-,其定義域?yàn)?0,). (2)g(x)=6mf(x)+1=2msin(2x+)-m+1(0<x<), 假設(shè)存在正實(shí)數(shù)m滿足題設(shè). ∵0<x<,

43、∴<2x+<,則sin(2x+)∈(,1]. 又m>0,則函數(shù)g(x)的值域?yàn)?1,m+1], 而g(x)的值域?yàn)?1,],故m+1=,∴m=. 故存在正實(shí)數(shù)m=使函數(shù)g(x)的值域?yàn)?1,]. 14在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知向量p=(c-2a,b),q=(cosB,cosC),p⊥q. (1)求角B的大?。? (2)若b=2,求△ABC面積的最大值. 解析 (1)由p⊥q得:(c-2a)cosB+bcosC=0 由正弦定理得,sinCcosB-2sinAcosB+sinBcosC=0 ∴sin(C+B)=2sinAcosB ∵B+C=π-A ∴sin(C+B)=sinA且sinA>0 ∴sinA=2sinAcosB,cosB= 又B∈(0,π),∴B=. (2)由余弦定理得,b2=a2+c2-2accosB =a2+c2-ac≥ac 當(dāng)且僅當(dāng)a=c時(shí)“=”成立. 又b=2,∴ac≤12. ∴S△ABC=acsinB≤×12×=3, 當(dāng)且僅當(dāng)a=c=2時(shí),S△ABC的最大值為3.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!