《2020屆高考數(shù)學(xué) 專題五 導(dǎo)數(shù)的應(yīng)用精準(zhǔn)培優(yōu)專練 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學(xué) 專題五 導(dǎo)數(shù)的應(yīng)用精準(zhǔn)培優(yōu)專練 理(15頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、培優(yōu)點(diǎn)五 導(dǎo)數(shù)的應(yīng)用
一、求切線方程
例1:曲線在點(diǎn)處的切線方程為.
【答案】
【解析】∵,
∴結(jié)合導(dǎo)數(shù)的幾何意義曲線可知在點(diǎn)處的切線方程的斜率為,
∴切線方程為.
二、求單調(diào)區(qū)間和極值
例2:已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),記在區(qū)間的最大值為,最小值為,求的取值范圍.
【答案】(1)見解析;(2).
【解析】(1),
①當(dāng)時(shí),,此時(shí)在單調(diào)遞增;
②當(dāng)時(shí),令,解得或;令,解得,
此時(shí)在,單調(diào)遞增,在單調(diào)遞減;
③當(dāng)時(shí),令,解得或;令,解得,
此時(shí)在,單調(diào)遞增,在單調(diào)遞減,
綜上可得,當(dāng)時(shí),在單調(diào)遞增.
當(dāng)時(shí),在,單調(diào)遞增,在
2、單調(diào)遞減.
當(dāng)時(shí),在,單調(diào)遞增,在單調(diào)遞減.
(2)由(1)中結(jié)論可知,當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增.
此時(shí),
∵,,
∴當(dāng)時(shí),,,
令,則,∴在單調(diào)遞減.
又∵,,∴,即.
當(dāng)時(shí),,∴,
綜上,當(dāng)時(shí),的取值范圍是.
三、導(dǎo)數(shù)與零點(diǎn)
例3:已知函數(shù),為的導(dǎo)函數(shù).證明:
(1)在區(qū)間存在唯一極大值點(diǎn);
(2)有且僅有個(gè)零點(diǎn).
【答案】(1)證明見解析;(2)證明見解析.
【解析】(1)對(duì)進(jìn)行求導(dǎo)可得,,,
取,則,
在內(nèi),為單調(diào)遞減函數(shù),且,,
所以在內(nèi)存在一個(gè),使得,
所以在內(nèi),,為增函數(shù);在內(nèi),,為減函數(shù),
所以在在區(qū)間存在唯一極大值點(diǎn)
3、.
(2)由(1)可知,當(dāng)時(shí),單調(diào)增,且,可得,
則在此區(qū)間單調(diào)減;
當(dāng)時(shí),單調(diào)增,且,,則在此區(qū)間單調(diào)增;
又,則在上有唯一零點(diǎn).
當(dāng)時(shí),單調(diào)減,且,則存在唯一的,使得,
在時(shí),,單調(diào)增;在時(shí),單調(diào)減,
且,所以在上無零點(diǎn);
當(dāng)時(shí),單調(diào)減,單調(diào)減,則在上單調(diào)減,,所以在上存在一個(gè)零點(diǎn).
當(dāng)時(shí),恒成立,
則在上無零點(diǎn),
綜上可得,有且僅有個(gè)零點(diǎn).
對(duì)點(diǎn)增分集訓(xùn)
一、選擇題
1.設(shè)函數(shù).若為奇函數(shù),則曲線在點(diǎn)處的切線方程
為()
A. B. C. D.
【答案】D
【解析】因?yàn)楹瘮?shù)是奇函數(shù),所以,解得,
所以,,
所以,,
所以曲線在點(diǎn)處的切
4、線方程為,
化簡(jiǎn)可得,故選D.
2.函數(shù)的圖像大致為()
A. B. C. D.
【答案】B
【解析】,,∴為奇函數(shù),舍去A,
,∴舍去D;
,∴,,
所以舍去C;因此選B.
3.曲線在點(diǎn)處的切線方程為()
A. B.
C. D.
【答案】C
【解析】因?yàn)?,所以曲線在點(diǎn)處的切線斜率為,
故曲線在點(diǎn)處的切線方程為.
4.若函數(shù) (是自然對(duì)數(shù)的底數(shù))在的定義域上單調(diào)遞增,則稱函數(shù)具有性質(zhì),
下列函數(shù)中具有性質(zhì)的是()
A. B. C. D.
【答案】A
【解析】對(duì)于A,令,,
則在上單調(diào)遞增,故具有性質(zhì),故選A.
5.已知曲線在點(diǎn)處的切線方程為,
5、則()
A., B., C., D.,
【答案】D
【解析】令,則,,得.
,可得.故選D.
6.已知函數(shù),若存在唯一的零點(diǎn),且,則的取值范圍是()
A. B. C. D.
【答案】C
【解析】當(dāng)時(shí),,函數(shù)有兩個(gè)零點(diǎn)和,不滿足題意,舍去;
當(dāng)時(shí),,令,得或,
時(shí),;時(shí),;時(shí),,且,
此時(shí)在必有零點(diǎn),故不滿足題意,舍去;
當(dāng)時(shí),時(shí),;時(shí),;
時(shí),,且,
要使得存在唯一的零點(diǎn),且,只需,即,則,
故選C.
7.已知函數(shù)有唯一零點(diǎn),則()
A. B. C. D.
【答案】C
【解析】函數(shù)的零點(diǎn)滿足,
設(shè),則,
當(dāng)時(shí),,
當(dāng)時(shí),,函數(shù)單調(diào)遞減;
當(dāng)時(shí),
6、,函數(shù)單調(diào)遞增,
當(dāng)時(shí),函數(shù)取得最小值,為.
設(shè),當(dāng)時(shí),函數(shù)取得最小值,為,
若,函數(shù)與函數(shù)沒有交點(diǎn);
若,當(dāng)時(shí),函數(shù)和有一個(gè)交點(diǎn),
即,解得.故選C.
8.若是函數(shù)的極值點(diǎn),則的極小值為()
A. B. C. D.
【答案】A
【解析】由題可得,
因?yàn)?,所以,,故?
令,解得或,
所以在,上單調(diào)遞增,在上單調(diào)遞減,
所以的極小值為,故選A.
二、填空題
9.曲線在點(diǎn)處的切線的斜率為,則________.
【答案】
【解析】,則,所以.
10.在平面直角坐標(biāo)系中,點(diǎn)在曲線上,且該曲線在點(diǎn)處的切線經(jīng)過點(diǎn)
(為自然對(duì)數(shù)的底數(shù)),則點(diǎn)的坐標(biāo)是.
【
7、答案】
【解析】設(shè)點(diǎn),則.
又,當(dāng)時(shí),,
點(diǎn)A在曲線上的切線為,即,
代入點(diǎn),得,即,
考查函數(shù),當(dāng)時(shí),;當(dāng)時(shí),,
且,當(dāng)時(shí),單調(diào)遞增,
注意到,故存在唯一的實(shí)數(shù)根,此時(shí),
故點(diǎn)的坐標(biāo)為.
11.若函數(shù)在內(nèi)有且只有一個(gè)零點(diǎn),則在上的最大值
與最小值的和為_______.
【答案】
【解析】由,得,
因?yàn)楹瘮?shù)在上有且僅有一個(gè)零點(diǎn)且,所以,
因此,,
從而函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以,,.
12.已知函數(shù),則的最小值是_________.
【答案】
【解析】,
所以當(dāng)時(shí),函數(shù)單調(diào)減,當(dāng)時(shí),函數(shù)單調(diào)增,
從而得到函數(shù)的減區(qū)間為,函數(shù)的增區(qū)間為,
8、
所以當(dāng)時(shí),函數(shù)取得最小值,此時(shí),
所以,故答案是.
三、解答題
13.已知函數(shù).
(1)討論函數(shù)的單調(diào)性,并證明函數(shù)有且只有兩個(gè)零點(diǎn);
(2)設(shè)是的一個(gè)零點(diǎn),證明曲線在點(diǎn)處的切線也是曲線的切線.
【答案】(1)見解析;(2)證明見解析.
【解析】(1)函數(shù)的定義域?yàn)椋?
又,所以函數(shù)在上單調(diào)遞增,
又,所以在區(qū)間存在一個(gè)零點(diǎn),
且,
所以在區(qū)間上也存在一個(gè)零點(diǎn),所以函數(shù)有且只有2個(gè)零點(diǎn).
(2)因?yàn)槭呛瘮?shù)的一個(gè)零點(diǎn),所以有.
曲線在處的切線方程為,
曲線曲線當(dāng)切線斜率為時(shí),切點(diǎn)坐標(biāo)為,
切線方程為,
化簡(jiǎn)為,
所以曲線在處的切線也是曲線的切線.
1
9、4.已知函數(shù).
(1)討論的單調(diào)性;
(2)是否存在,使得在區(qū)間的最小值為且最大值為?若存在,求出的所有值;
若不存在,說明理由.
【答案】(1)見解析;(2)存在,或滿足題意.
【解析】(1),
①當(dāng)時(shí),,此時(shí)在單調(diào)遞增;
②當(dāng)時(shí),令,解得或;令,解得,
此時(shí)在單調(diào)遞增,在單調(diào)遞減;
③當(dāng)時(shí),令,解得或;令,解得,
此時(shí)在單調(diào)遞增,在單調(diào)遞減,
綜上可得,當(dāng)時(shí),在單調(diào)遞增.
當(dāng)時(shí),在單調(diào)遞增,在單調(diào)遞減.
當(dāng)時(shí),在單調(diào)遞增,在單調(diào)遞減.
(2)由(1)中結(jié)論可知,
當(dāng)時(shí),在單調(diào)遞增,
此時(shí),∴,滿足題意.
當(dāng)時(shí),若,即,則在單調(diào)遞減,
此時(shí),∴,滿
10、足題意.
若,即,則在單調(diào)遞減,在單調(diào)遞增.
此時(shí)①,
∵,∴當(dāng)時(shí),②,
由①②可得,與矛盾,故不成立.
當(dāng)時(shí),③,
由①③可得,與矛盾,故不成立.
綜上可知,或滿足題意.
15.已知函數(shù),是的導(dǎo)數(shù).
(1)證明:在區(qū)間存在唯一零點(diǎn);
(2)若時(shí),,求的取值范圍.
【答案】(1)證明見解析;(2).
【解析】(1)由題意得,
令,∴,
當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減,
∴的最大值為,
又,,∴,即,
∴在區(qū)間存在唯一零點(diǎn).
(2)由題設(shè)知,,可得.
由(1)知,在只有一個(gè)零點(diǎn),
設(shè)為,且當(dāng)時(shí),;當(dāng)時(shí),,
所以在單調(diào)遞增,在單調(diào)遞減.
又,,所以當(dāng)時(shí),.
又當(dāng),時(shí),,故.
因此,的取值范圍是.
15