180萬(wàn)噸礦井多繩摩擦提升機(jī)的選型設(shè)計(jì)含4張CAD圖
180萬(wàn)噸礦井多繩摩擦提升機(jī)的選型設(shè)計(jì)含4張CAD圖,礦井,摩擦,磨擦,提升,晉升,選型,設(shè)計(jì),cad
外文資料
Mine hoisting in deep shafts in the 1st half of 21st Century
Key words: deep shaft, mine hosting, Blair winder, rope safety factor, drum sizing, skip factor
Introduction
The mineral deposits are exploited on deeper and deeper levels. In connection with this, definitions like “deep level” and “deep shaft” became more and more popular. These definitions concern the depth where special rules regarding an excavation driving, exploitation, rock pressure control, lining construction, ventilation, underground and vertical transport, work organization and economics apply.
It has pointed out that the “deep level” is a very relative definition and should be used only with a reference to particular hydro-geological, mining and technical conditions in a mine or coal-field. It should be also strictly defined what area of “deep level” or “deep shaft” definitions are considered. It can be for example:
- mining geo-engineering,
- technology of excavation driving,
- ventilation (temperature).
It is obvious that the “deep level” defined from one point of view, not necessarily means a “deep level” in another area. According to [5] as a deep mine we can treat each mine if:
- the depth is higher than 2300 m or
- mineral deposit temperature is higher than 38 oC.
It is well known that the most of deep mines are in South Africa. Usually, they are gold or diamonds mines.
Economic deposits of gold-bearing ore are known to exist at depths up to 5000 m in a number of South Africa regions. However, due to the depth and structure of the reef in some areas, previous methods of reaching deeper reefs using sub-vertical shaft systems would not be economically viable. Thus, the local mining industry is actively investigating new techniques for a single-lift shaft up to 3500 m deep in the near future and probably around 5000 m afterwards. When compared with the maximum length of wind currently in operation of 2500 m, it is apparent that some significant innovations will be required.
The most important matter in the deep mine is the vertical transport and the mine hoisting used in the shaft. From the literature [1-12] results that B.M.R. (Blair Multi-Rope) hoist is preferred to be used in deep mines in South Africa. From the economic point of view, the most important factors are:
- construction and parameters of winding ropes (safety factor, mainly),
- mine hoisting drums capacity,
Hoisting Installation
The friction hoist (up to 2100 m), single drum and the double drum (classic and Blair type double drum) hoist are used in deep shafts in South Africa.
Drum winders
Drum winders are most widely used in South Africa and probably in the world. Three types of winders fall into this category
- Single drum winders,
- Double drum winders,
- Blair multi-rope winders (BMR).
Double drum winders
Two drums are used on a single shaft, with the ropes coiled in opposite directions with the conveyances balancing each other. One or both drums are clutched to the shaft enabling the relative shaft position of the conveyances to be changed and permitting the balanced hoisting from multiple levels
The Blair Multi-Rope System (BMR)
In 1957 Robert Blair introduced a system whereby the advantage of the drum winder could be extended to two or more ropes. The two-rope system developed incorporated a two-compartment drum with a rope per compartment and two ropes attached to a single conveyance. He also developed a rope tension-compensating pulley to be attached to the conveyance. The Department of Mines allowed the statutory factor of safety for hoisting minerals to be 4,275 instead of 4,5 provided the capacity factor in either rope did not fall below the statutory factor of 9. This necessitated the use of some form of compensation to ensure an equitable distribution of load between the two ropes. Because the pulley compensation is limited, Blair also developed a device to detect the miscalling on the drum, as this could cause the ropes to move at different speeds and so affect their load sharing capability. Fig.2 shows the depth payload characteristics of double drum, BMR and Koepe winders.
The B.M.R. hoist is used almost exclusively in South Africa, probably because they were invented there, particularly for the deep shaft use. There is one installation in England. Because of this hoist's physical characteristics, and South African mining rules favouring it in one respect, they are used mostly for the deep shaft mineral hoisting. The drum diameters are smaller than that of an equivalent conventional hoist, so one advantage is that they are more easily taken underground for sub-shaft installations.
A Blair hoist is essentially a conventional hoist with wider drums, each drum having a centre flange that enables it to coil two ropes attached to a skip via two headsheaves. The skip connection has a balance wheel, similar to a large multi-groove V-belt sheave, to allow moderate rope length changes during winding. The sheaves can raise or lower to equalize rope tensions.
The Blair hoist's physical advantage is that the drum diameter can be smaller than usual and, with two ropes to handle the load, each rope can be much smaller. The government mining regulations permit a 5 % lower safety factor at the sheave for mineral hoisting with Blair hoists. This came about from a demonstration by the% permits the Blair hoists to go a little deeper than the other do.
The gearless B.M.R. hoist at East Dreifontein looks similar to an in-line hoist except that the drums are joined mechanically and they are a little out of line with each other. This is because each drum directly faces its own sheaves for the best fleet angle. The two hoist motors are fed via thyristor rectifier/inverter units from a common 6.6-KV busbar. The motors are thus coupled electrically so that the skips in the shaft run in balance, similar to a conventional double-drum hoist. Each motor alternates its action as a DC generator or DC motor, either feeding in or taking out energy from the system. The gearless Blair can be recognized by the offset drums and the four brake units. A second brake is always a requirement, each drum must have two brakes, because the two drums have no mechanical connection to each other. Most recent large B.M.R. hoists are 4.27 or 4.57 m in diameter, with 44.5 ÷ 47.6 mm ropes [1].
In arriving at a drum size the following parameters have been used:
- The rope to be coiled in four layers,
- The rope tread pressure at the maximum static tension to be less than 3,2 MPa,
- The drum to rope diameter ratio to be greater than 127 to allow for a rope speed of 20 m/s.
With the above and a need to limit the axial length of the drums, a rope compartment of 8,5 m diameter by 2,8 m wide, was chosen. The use of 5 layers of coiled rope could reduce the rope compartment width to 2,15 m but this option has been discarded at this stage because of possible detrimental effects on the rope life.
中文譯文
21 世紀(jì)前半葉礦井提升機(jī)在深井中的應(yīng)用
關(guān)鍵詞: 深井,礦井提升機(jī),布萊爾提升機(jī), 鋼絲繩安全要素,滾筒尺寸, 驟變要素
礦物沉淀物在越來(lái)越深的水平上被開(kāi)采。 關(guān)于這方面,像“深水平面”和“深井”的定義 變得越來(lái)越流行了。這些定義與有關(guān)特殊規(guī)則方面的深度有關(guān),涉及到挖掘操縱 、開(kāi)采、 巖石壓力控制、內(nèi)層建造、通風(fēng),地下和垂直的運(yùn)輸, 勞動(dòng)組織和經(jīng)濟(jì)學(xué)應(yīng)用。
“ 深水平面 ”已經(jīng)被指出是一種非常相對(duì)的定義,這個(gè)定義應(yīng)當(dāng)只能用于采礦或煤領(lǐng)域有關(guān)特殊的水-地質(zhì)學(xué), 采礦和技術(shù)條件方面的參考。 它也應(yīng)當(dāng)用于嚴(yán)格定義已經(jīng)公認(rèn)的有關(guān)“深水平面”或“深井”領(lǐng)域的定義。 可以舉例來(lái)說(shuō):
- 采礦工程技術(shù),
- 開(kāi)采操縱技術(shù),
- 通風(fēng) (降低溫度).
明顯的是,從一方面得到的“深水平面”定義,在其他領(lǐng)域并不意味著“深水平面” 。 根據(jù)第5段提到的“深井”,我們可以設(shè)想每一個(gè)礦井:
- 深度超過(guò)2300米深或者
- 礦石沉積物的溫度超過(guò)38攝氏度。
廣為人知的是大部分深井在南非。 通常,它們是金礦或者鉆石礦井。人們都知道像黃金方面礦石的經(jīng)濟(jì)沉淀物存在于南非一些深達(dá)5000米的深井領(lǐng)域。 然而,在一些區(qū)域中,存在暗礁的深度和結(jié)構(gòu)要素,先前在垂直的深井中使用的到達(dá)深度暗礁的方法在經(jīng)濟(jì)上不可取。 因此,當(dāng)?shù)氐牟傻V業(yè)正在積極地研究在不久的將來(lái)能夠用于深度達(dá)到3500米或者未來(lái)深度在5000米左右的礦井中的單一提升技術(shù)。相對(duì)于當(dāng)今深度達(dá)2500米的礦井中的提升技術(shù),它的一些創(chuàng)新在將來(lái)會(huì)有很大的意義。
在深井中最重要的事件是垂直運(yùn)輸以及礦井提升技術(shù)在井中的應(yīng)用。參考文獻(xiàn)的1至12篇可以得出這樣的結(jié)論:布萊爾多繩提升機(jī)在南非的深井應(yīng)用中是首選的。 從經(jīng)濟(jì)學(xué)的觀點(diǎn)看, 最重要的要素是:
- 提升繩索的構(gòu)造和參數(shù)(主要是安全要素)
- 礦井提升絞車的承載能力,
摩擦提升機(jī)(提升深度達(dá)2100米),單獨(dú)的 和雙滾筒提升機(jī)(第一流的和布萊爾形式的雙滾筒提升機(jī))廣泛應(yīng)用于南非地區(qū)。
1 Carbogno Alfred Ing 博士, 來(lái)自波蘭格利維策市西里西亞技術(shù)大學(xué),采礦機(jī)械化學(xué)會(huì), Akademicka 2 , PL 44-101 Gliwice, (他于2002年8月5日修訂了先前被公認(rèn)為是標(biāo)準(zhǔn)的版本)
滾筒提升機(jī)
滾筒提升機(jī)被廣泛應(yīng)用于南非或許全世界。 三種類型的提升機(jī)屬于這樣的類型:
- 單一滾筒提升機(jī),
- 雙鼓提升機(jī),
(3)布萊爾多繩繞線機(jī) (BMR).
雙滾筒提升機(jī)
雙滾筒應(yīng)用于單井,鋼絲繩以相對(duì)的方向纏繞在它的上面,以保持運(yùn)輸工具的平衡。單一或者雙滾筒附著于井,使得運(yùn)輸工具能夠在相對(duì)于井的位置上變換以及從不等高的水平面平穩(wěn)的提升。
布萊爾多繩系統(tǒng) (BMR)在 1957 年,布萊爾羅伯特引進(jìn)了一種提升系統(tǒng),這種系統(tǒng)可以將滾筒的優(yōu)勢(shì)擴(kuò)大到能夠纏繞兩根或多根鋼絲繩。 這種雙繩系統(tǒng)發(fā)展成為二合一的滾筒,每一部分一根繩以及兩根繩附著在單一的運(yùn)輸工具上。 他也開(kāi)發(fā)了一種張緊滑輪裝置,把它附著在運(yùn)輸工具上。 礦山部門(mén)說(shuō):倘若任何一根繩的承載能力要素不能降至法定要素9以下,將允許提升機(jī)械的法定安全要素從4275更改為45。這樣一種補(bǔ)償?shù)谋匾允沟锰幱趦筛K之間的載荷能夠平衡分配。因?yàn)榛喌难a(bǔ)償作用有限,布萊爾同樣發(fā)明了一種裝置來(lái)監(jiān)測(cè)滾筒的誤差,因?yàn)檫@樣可以使得鋼絲繩能夠以不同的速度移動(dòng)以及干預(yù)兩根繩能夠按他們的實(shí)際承載能力分配。 圖2描述了雙滾筒的深度有效載荷的特性,布萊爾和Koepe提升機(jī)。
布萊爾提升機(jī)幾乎專一性的應(yīng)用于南非地區(qū),或許由于這些機(jī)器是在那兒發(fā)明的,尤其是應(yīng)用于深井。 在英國(guó)有一套設(shè)備。 因?yàn)檫@種提升機(jī)的物理性能好,以及南非地區(qū)的礦井規(guī)程在某一方面特別親賴于它,他們主要被應(yīng)用于深井提升系統(tǒng)。這種滾筒的直徑比普通相當(dāng)規(guī)格的提升機(jī)小,因此一方面的優(yōu)點(diǎn)是它們更加便于在井下安裝。
布萊爾提升機(jī)本質(zhì)上是帶有寬鼓的常規(guī)提升機(jī),每個(gè)滾筒有一個(gè)中心凸輪,以使得兩根繩子能夠纏繞在上面,用來(lái)急速改變兩個(gè)主導(dǎo)輪。 急變系統(tǒng)擁有一個(gè)平衡輪, 類似于大的多凹槽形的V帶滑輪, 以允許在提升過(guò)程中繩索長(zhǎng)度的適度變化。滑輪能升起或者降低以使得鋼絲繩的張緊力相等。
布萊爾提升機(jī)的物理性能優(yōu)勢(shì)表現(xiàn)在滾筒的直徑比普通的小,以及兩根繩子同時(shí)承載載荷,使得每根繩子能夠變得更加小些。政府部門(mén)的采礦規(guī)則允許使用布萊爾提升機(jī)的礦井在滑輪安全要素方面低于正常5%。這從發(fā)明家羅勃特布萊爾的演示可以看出, 一根嚴(yán)格符合要求的鋼絲繩,以額定速度運(yùn)轉(zhuǎn), 由剩余的鋼絲繩承擔(dān)負(fù)載。 這 5% 的安全要素允許布萊爾提升機(jī)比其他提升機(jī)稍微深入一些。
在Dreifontein東部的無(wú)傳動(dòng)裝置的 B.M.R. 提升機(jī)除滾筒連接以及它們相互不在同一中心外,從外表上看似同軸提升機(jī)。這是因?yàn)槊總€(gè)滾筒直接地面對(duì)自己的滑槽輪而獲得最佳的深淺角度。 兩個(gè)提升機(jī)的馬達(dá)通過(guò)6.6千伏的半導(dǎo)體閘流管整流換流器/反用換流器來(lái)反饋。馬達(dá)與電相連接以便軸中的急變能夠保持平衡,類似于傳統(tǒng)的雙滾筒提升機(jī)。每臺(tái)馬達(dá)交替變換它們的作用相當(dāng)于直流發(fā)電機(jī)或者直流電動(dòng)機(jī)任意的從系統(tǒng)中輸入或者輸出能量。無(wú)傳動(dòng)裝置的布萊爾提升機(jī)能夠被偏移滾筒和四種剎車裝置所檢驗(yàn)。 第二種剎車永遠(yuǎn)是必要的,每個(gè)滾筒必須有兩個(gè)剎車,因?yàn)閮蓚€(gè)滾筒之間沒(méi)有機(jī)械連接。大部分最新的布萊爾提升機(jī)直徑達(dá)到4.27或者4.57米,附帶有直徑達(dá)44.5至47.6毫米的鋼絲繩。
在達(dá)到滾筒的尺寸方面,以下的參數(shù)已經(jīng)被采用:
- 鋼絲繩被纏繞成四層,
- 鋼絲繩的最大靜態(tài)壓力要小于32兆帕,
- 滾筒與鋼絲繩的直徑比要大于127,以保證鋼絲繩的速度達(dá)到20米/秒。
綜上所述為限制滾筒的軸的長(zhǎng)度的需要,鋼絲繩減速箱的尺寸選擇為直徑85米、寬28米。 5層纏繞的鋼絲繩的利用可以使鋼絲繩間隔間的寬度減少到215米,但是這種想法在此階段已經(jīng)被放棄,是因?yàn)樗鼈兛赡軐?duì)鋼絲繩的壽命有負(fù)面影響。
收藏