喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有請放心下載,原稿可自行編輯修改=====================【QQ:1304139763可咨詢交流】喜歡就充值下載吧。。
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有請放心下載,原稿可自行編輯修改=====================【QQ:1304139763可咨詢交流】喜歡就充值下載吧。。
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有請放心下載,原稿可自行編輯修改=====================【QQ:1304139763可咨詢交流】喜歡就充值下載吧。。
畢業(yè)設計(論文)任務書
I、畢業(yè)設計(論文)題目:
電飯煲傳感器外殼沖壓工藝與模具設計
與制造
II、畢 業(yè)設計(論文)使用的原始資料(數(shù)據(jù))及設計技術要求:
設計原始資料:1.零件圖;
2.零件材料牌號及厚度:Q235,δ0.6;
設計技術要求:1.年生產(chǎn)綱領:80000件;
2. 要求外文資料翻譯忠實原文;
3. 要求編制的沖壓工藝規(guī)程合理;
4. 要求設計的沖壓模具滿足加工要求;
5. 要求圖紙設計規(guī)范,符合制圖標準;
6. 要求畢業(yè)論文敘述條理清楚,設計計算正確,論文格式規(guī)范。
III、畢 業(yè)設計(論文)工作內(nèi)容及完成時間:
1.繪制零件圖,收集、查閱有關資料,外文資料翻譯(6000字符),撰寫開題報告;
2.28 -3.18 3周
2.對零件進行沖壓工藝分析,確定工藝方案; 3.21-3.25 1周
3.計算、確定沖壓力模具工作部分尺寸及公差,選取模具結構;
3.28-4.8 2周
4.設計專用模具一套,繪制裝配圖,拆繪主要零件圖;(折合A1圖4張)
4.11-5.13 5周
5.任選模具一個主要工作零件,進行機加工藝規(guī)程設計; 5.16-5.27 2周
6.撰寫畢業(yè)論文、畢業(yè)設計審查、畢業(yè)答辯。 5.30-6.24 4周
Ⅳ 、主 要參考資料:
[1].姜奎華主編. 沖壓工藝與模具設計. 北京:機械工業(yè)出版社,2003.6
[2].解汝升. 沖壓模具設計與制造技術. 北京:中國標準出版社,1997
[3].許發(fā)樾主編. 實用模具設計與制造手冊. 北京:機械工業(yè)出版社,2001.2
[4].廖念釗等主編. 互換性與技術測量. 北京:中國計量出版社,2011.2·第5版
[5]. Wilson,F(xiàn).W.Die design handbook MaGraw Hill 1990.6
航空工程 系(教研室) 機械設計制造及其自動化 專業(yè)類 0781053 班
學生(簽名):熊勇
日期: 自 2011 年 2 月 28 日至 2011 年 6 月 24 日
指導教師(簽名):羅海泉
助理指導教師(并指出所負責的部分):
航空工程 系(室)主任(簽名):姚坤弟
附注:任務書應該附在已完成的畢業(yè)設計說明書首頁。
圖紙清單
代碼
圖紙代碼
名稱
圖號
備注
1
XY-00
電飯煲傳感器外殼模具裝配圖
A0
附圖
2
XY-01
電飯煲傳感器外殼零件圖
A4
附圖
3
XY-00-04
托桿
A4
附圖
4
XY-00-08
凸模墊板
A3
附圖
5
XY-00-09
凸模壓模板
A3
附圖
6
XY-00-13
凸凹模壓模板
A3
附圖
7
XY-00-15
打桿
A4
附圖
8
XY-00-20
推件塊
A4
附圖
9
XY-00-21
凸凹模
A4
附圖
10
XY-00-22
落料凹模
A3
附圖
11
XY-00-23
壓邊圈
A4
附圖
12
XY-00-24
拉深凸模
A4
附圖
13
GB/T2855.10-90
下模架
A1
附圖
14
GB/T2855.9-90
上模架
A1
附圖
15
JB/T7646.3
模柄
A4
附圖
16
GB2861.6-81
導套
A4
附圖
南昌航空大學科技學院學士學位(論文)外文翻譯
Capacitive Sensor Operation Part 1: The Basics
Part 1 of this two-part article reviews the concepts and theory of capacitive sensing to help to optimize capacitive sensor performance. Part 2 of this article will discuss how to put these concepts to work.
Noncontact capacitive sensors measure the changes in an electrical property called capacitance. Capacitance describes how two conductive objects with a space between them respond to a voltage difference applied to them. A voltage applied to the conductors creates an electric field between them, causing positive and negative charges to collect on each object?
Capacitive sensors use an alternating voltage that causes the charges to continually reverse their positions. The movement of the charges creates an alternating electric current that is detected by the sensor. The amount of current flow is determined by the capacitance, and the capacitance is determined by the surface area and proximity of the conductive objects. Larger and closer objects cause greater current than smaller and more distant objects. Capacitance is also affected by the type of nonconductive material in the gap between the objects. Technically speaking, the capacitance is directly proportional to the surface area of the objects and the dielectric constant of the material between them, and inversely proportional to the distance between them as shown.:
In typical capacitive sensing applications, the probe or sensor is one of the conductive objects and the target object is the other. (Using capacitive sensors to sense plastics and other insulators will be discussed in the second part of this article.) The sizes of the sensor and the target are assumed to be constant, as is the material between them. Therefore, any change in capacitance is a result of a change in the distance between the probe and the target. The electronics are calibrated to generate specific voltage changes for corresponding changes in capacitance. These voltages are scaled to represent specific changes in distance. The amount of voltage change for a given amount of distance change is called the sensitivity. A common sensitivity setting is 1.0 V/100 μm. That means that for every 100 μm change in distance, the output voltage changes exactly 1.0 V. With this calibration, a 2 V change in the output means that the target has moved 200 μm relative to the probe.
Focusing the Electric Field
When a voltage is applied to a conductor, the electric field emanates from every surface. In a capacitive sensor, the sensing voltage is applied to the sensing area of the probe. For accurate measurements, the electric field from the sensing area needs to be contained within the space between the probe and the target. If the electric field is allowed to spread to other items—or other areas on the target—then a change in the position of the other item will be measured as a change in the position of the target. A technique called "guarding" is used to prevent this from happening. To create a guard, the back and sides of the sensing area are surrounded by another conductor that is kept at the same voltage as the sensing area itself. When the voltage is applied to the sensing area, a separate circuit applies the exact same voltage to the guard. Because there is no difference in voltage between the sensing area and the guard, there is no electric field between them. Any other conductors beside or behind the probe form an electric field with the guard instead of with the sensing area. Only the unguarded front of the sensing area is allowed to form an electric field with the target.
Definitions
Sensitivity indicates how much the output voltage changes as a result of a change in the gap between the target and the probe. A common sensitivity is 1 V/0.1 mm. This means that for every 0.1 mm of change in the gap, the output voltage will change 1 V. When the output voltage is plotted against the gap size, the slope of the line is the sensitivity.
A system's sensitivity is set during calibration. When sensitivity deviates from the ideal value this is called sensitivity error, gain error, or scaling error. Since sensitivity is the slope of a line, sensitivity error is usually presented as a percentage of slope, a comparison of the ideal slope with the actual slope.
Offset error occurs when a constant value is added to the output voltage of the system. Capacitive gauging systems are usually "zeroed" during setup, eliminating any offset deviations from the original calibration. However, should the offset error change after the system is zeroed, error will be introduced into the measurement. Temperature change is the primary factor in offset error.
Sensitivity can vary slightly between any two points of data. The accumulated effect of this variation is called linearity erro. The linearity specification is the measurement of how far the output varies from a straight line.
To calculate the linearity error, calibration data are compared to the straight line that would best fit the points. This straight reference line is calculated from the calibration data using least squares fitting. The amount of error at the point on the calibration line furthest away from this ideal line is the linearity error. Linearity error is usually expressed in terms of percent of full scale (%/F.S.). If the error at the worst point is 0.001 mm and the full scale range of the calibration is 1 mm, the linearity error will be 0.1%.
Note that linearity error does not account for errors in sensitivity. It is only a measure of the straightness of the line rather than the slope of the line. A system with gross sensitivity errors can still be very linear.
Error band accounts for the combination of linearity and sensitivity errors. It is the measurement of the worst-case absolute error in the calibrated range. The error band is calculated by comparing the output voltages at specific gaps to their expected value. The worst-case error from this comparison is listed as the system's error band. In Figure 7, the worst-case error occurs for a 0.50 mm gap and the error band (in bold) is –0.010.
Gap (mm)
Expected Value (VDC)
Actual Value VDC)
Error (mm)
0.50
–10.000
–9.800
–0.010
0.75
–5.000
–4.900
–0.005
1.00
0.000
0.000
0.000
1.25
5.000
5.000
0.000
1.50
10.000
10.100
0.005
Figure 7. Error values
Bandwidth is defined as the frequency at which the output falls to –3 dB, a frequency that is also called the cutoff frequency. A –3 dB drop in the signal level is an approximately 30% decrease. With a 15 kHz bandwidth, a change of ±1 V at low frequency will only produce a ±0.7 V change at 15 kHz. Wide-bandwidth sensors can sense high-frequency motion and provide fast-responding outputs to maximize the phase margin when used in servo-control feedback systems; however, lower-bandwidth sensors will have reduced output noise which means higher resolution. Some sensors provide selectable bandwidth to maximize either resolution or response time.
Resolution is defined as the smallest reliable measurement that a system can make. The resolution of a measurement system must be better than the final accuracy the measurement requires. If you need to know a measurement within 0.02 μm, then the resolution of the measurement system must be better than 0.02 μm.
The primary determining factor of resolution is electrical noise. Electrical noise appears in the output voltage causing small instantaneous errors in the output. Even when the probe/target gap is perfectly constant, the output voltage of the driver has some small but measurable amount of noise that would seem to indicate that the gap is changing. This noise is inherent in electronic components and can be minimized, but never eliminated.
If a driver has an output noise of 0.002 V with a sensitivity of 10 V/1 mm, then it has an output noise of 0.000,2 mm (0.2 μm). This means that at any instant in time, the output could have an error of 0.2 μm.
The amount of noise in the output is directly related to bandwidth. Generally speaking, noise is distributed over a wide range of frequencies. If the higher frequencies are filtered before the output, the result is less noise and better resolution (Figures 8, 9). When examining resolution specifications, it is critical to know at what bandwidth the specifications apply.
Capacitive Sensor Operation Part 2: System Optimization
Part 2 of this two-part article focuses on how to optimize the performance of your capacitive sensor, and to understand how target material, shape, and size will affect the sensor's response.
Effects of Target Size
The target size is a primary consideration when selecting a probe for a specific application. When the sensing electric field is focused by guarding, it creates a slightly conical field that is a projection of the sensing area. The minimum target diameter is usually 130% of the diameter of the sensing area. The further the probe is from the target, the larger the minimum target size.
Range of Measurement
The range in which a probe is useful is a function of the size of the sensing area. The greater the area, the larger the range. Because the driver electronics are designed for a certain amount of capacitance at the probe, a smaller probe must be considerably closer to the target to achieve the desired amount of capacitance. In general, the maximum gap at which a probe is useful is approximately 40% of the sensing area diameter. Typical calibrations usually keep the gap to a value considerably less than this. Although the electronics are adjustable during calibration, there is a limit to the range of adjustment.
Multiple Channel Sensing
Frequently, a target is measured simultaneously by multiple probes. Because the system measures a changing electric field, the excitation voltagefor each probe must be synchronized or the probes will interfere with each other. If they were not synchronized, one probe would be trying to increase the electric field while another was trying to decrease it; the result would be a false reading. Driver electronics can be configured as masters or slaves; the master sets the synchronization for the slaves in multichannel systems.
Effects of Target Material
The sensing electric field is seeking a conductive surface. Provided that the target is a conductor, capacitive sensors are not affected by the specific target material; they will measure all conductors—brass, steel, aluminum, or salt water—as the same. Because the sensing electric field stops at the surface of the conductor, target thickness does not affect the measurement
中文翻譯
電容式傳感器操作第一部分:基礎
這篇文章的第一部分回顧了電容式傳感器的概念和理論來幫助我們優(yōu)化電容式傳感器的性能。第二部分討論了怎樣使這些概念去工作。
非接觸式電容傳感器測量的電特性變化稱為電容。電容描述了有一定距離的兩個導電物體怎樣產(chǎn)生一個電壓差。電壓施加到導體上并產(chǎn)生電場,造成正負電荷聚集到每個導體上。如果電壓的極性是相反的,那么電荷也是相反的。
電容式傳感器使用交流電壓就會引起電子不斷反轉他們的位置。傳感器就能檢測出電子移動所產(chǎn)生的交流電流。電流的流量是由電容決定的,而電容是有導體的表面積和導體之間的距離決定的。表面積更大,距離更近的導體比小面積遠距離導體能夠引起更大的電流。導體之間介質的材料也影響電容。從技術上講,電容是與導體的表面積和在導體之間介質的介電常數(shù)成正比的,與導體之間的距離成反比。公式如下:
在典型的電容式傳感應用,探針或傳感器是導體中的一個,另一個則是測量對象。(利用電容式傳感器來感應塑料和其他絕緣體將在本文的第二部分討論。)傳感器和被測對象的大小假定不變,這是由他們之間的材料確定。因此,電容的任何改變都是探針和目標之間的距離變化產(chǎn)生的。被校準的電子產(chǎn)生特定的電壓變化電容也產(chǎn)生相應變化。這些電壓變化是與距離變化成比例的。在給定距離上產(chǎn)生的電壓變化叫做靈敏度。一個常見的靈敏度設置時1.0 V/100 μm。這就意味著每改變100μm的距離,輸出就會變化1V。有了這個校準,一個2V的輸出變化就意味著目標距離探測器發(fā)生了200μm的變化。
關于電場
當電壓應用于導體,電場從每個表面產(chǎn)生。在電容傳感器中,感應電壓應用到探頭的感應區(qū)為了準確測量,感應區(qū)的電場需包含在探針與目標的空間內(nèi)。如果電場可以傳播到其他項目,或者目標的其他地區(qū)-在其他項目上這個位置的改變作為衡量在目標的這個位置上測量的變化。一種名為“守衛(wèi)”的技術是用來防止這種情況發(fā)生。要創(chuàng)建一個守衛(wèi),感應區(qū)背部和四周都是被另一個導體包圍,以使這個感應區(qū)本身為同一電壓。當電壓施加到感應區(qū),一個單獨的電路應用于完全相同的電壓給守衛(wèi)。因為在感應區(qū)和守衛(wèi)之間沒有電壓差,所以在他們之間就沒有電場。在探針周圍或后面的導體能與守衛(wèi)形成電場,而不是和感應區(qū)。只有無守衛(wèi)的感應區(qū)允許和目標形成電場。
定義
靈敏度表示在目標和探頭之間的差距變化時,輸出電壓的變化。一個常用靈敏度單位是1 V/0.1 mm。這意味著距離每改變0.1mm,輸出電壓改變1V。以距離為行坐標輸出電壓為縱坐標描點,這條線的斜率就是靈敏度。
在校準時,就設置系統(tǒng)的靈敏度。當靈敏度偏離理想值,這是所謂的靈敏度誤差,增益誤差,縮放錯誤。由于靈敏度是一個直線的斜率,靈敏度錯誤通常是表現(xiàn)為一個百分比的斜坡,一對理想與實際斜率的比較。
偏移誤差發(fā)生時,常值被添加到系統(tǒng)的輸出電壓。在設置期間電容測量系統(tǒng)通常是“零”,從原來的校準中解決了偏移誤差。但是在系統(tǒng)清零后,偏移誤差應當改變,誤差將被引入到測量。溫度的變化是偏移誤差的主要因素。
靈敏度能夠在數(shù)據(jù)的任何兩點之間變化。這一變化的累積效應被稱為線性誤差。線性度規(guī)范是測量輸出結果偏離直線多遠。
為了計算線性誤差,標定數(shù)據(jù)與最適合這些點的直線相比。這參考線是采用最小二乘擬合數(shù)據(jù)計算出的。校準線上的誤差點中離基準線最遠的點是線性誤差。線性誤差通常在百分之方面表示滿量程(%/ FS)的。如果在最低點誤差為0.001毫米,全面的校準范圍為 1毫米,線性誤差為0.1%。
請注意,線性誤差不算到靈敏度誤差中。這僅僅是該行的直線度測量,而不是直線的斜率。一個有著嚴重靈敏度錯誤的系統(tǒng)仍然可以非常好的線性的。
誤差帶是線性和靈敏度誤差的組合。這是在校準測量范圍內(nèi)最壞的情況下測量的絕對誤差。該誤差帶的計算方法是比較在輸出電壓和他們的預期值的具體差距。從這個比較最壞情況的錯誤被列為該系統(tǒng)的誤差帶。在圖7中,最壞的情況下誤差為0.50毫米的差距和誤差帶(粗體)是-0.010。
間隔 (mm)
預期值(VDC)
實際指標
(VDC)
誤差 (mm)
0.50
–10.000
–9.800
–0.010
0.75
–5.000
–4.900
–0.005
1.00
0.000
0.000
0.000
1.25
5.000
5.000
0.000
1.50
10.000
10.100
0.005
圖7:誤差值
帶寬的定義是,當輸出頻率下降至-3分貝的頻率,這也是所謂的截止頻率。一個在信號水平-3分貝下降,是近30%的跌幅。與15 kHz的帶寬,為±1V的低頻率的變化,只會在15千赫±0.7V的變化。寬的帶寬傳感器可以感知高頻移動,并提供快速響應,在使用反饋的伺服控制系統(tǒng)中以最大限度地輸出相位裕度;但是,低帶寬的傳感器會減少輸出噪聲,這意味著更高的分辨率。有些傳感器提供可選擇的帶寬,以最大限度地提高或分辨率或響應時間。
分辨率是定義為一個系統(tǒng)可以做到最小的可靠的測量。一個測量系統(tǒng)的分辨率必須大于最終精確度的測量要求。如果您需要知道在0.02微米內(nèi)的尺寸,則該測量系統(tǒng)的分辨率必須比0.02微米好。
分辨率的主要決定因素是電氣噪聲。電噪聲出現(xiàn)在輸出電壓引起很小的輸出誤差。即使當探針/目標距離是完全不變,驅動器的輸出電壓具有小但可測量的噪音,似乎就表明,這一距離在改變。這種噪聲是電子元器件固有的,可以最小化,但從來沒有消除。
如果一個驅動程序有一個為10V/1毫米的靈敏度為0.002 V的輸出噪聲,那么它的輸出噪聲0.000,2毫米(0.2微米)。這意味著,在經(jīng)過一段時間后的任何瞬間,輸出能有0.2微米的誤差。
對噪聲的輸出量對帶寬有直接關系。一般來說,噪聲的頻率分布廣泛。如果更高頻率的輸出前過濾,其結果是減少噪音和高分辨率(圖8,9)。在檢查分辨率時,關鍵是知道規(guī)格適用在什么帶寬。
電容式傳感器操作第二部分:系統(tǒng)優(yōu)化
這部分分為這篇文章的第二部分著重就如何優(yōu)化您的電容式傳感器的性能,并了解靶材料,形狀和大小如何影響傳感器的響應。
目標大小的影響
當選擇一個探測器進行特定的應用時,目標的大小是一個主要的考慮因素。當守衛(wèi)關注感應電場時,它創(chuàng)建一個輕微的錐形場這是一個敏感領域的投影。最低目標的直徑通常是感應區(qū)直徑130%。探頭離目標越遠,最小目標的大小越大。
測量范圍
該范圍是在其中一個探測器是一種有用的感應區(qū)大小的函數(shù)。面積越大,范圍越大。由于電子產(chǎn)品的驅動程序在探頭中被設計成有固定的電容,探頭越小越應當靠近目標;來獲得設計的電容量。一般來說,在其中一個有用的探測器中最大的距離大約是感應區(qū)域面積直徑的40%。典型的校準通常保持對一個值大大低于這一標準的間距。雖然電子產(chǎn)品在校準時可調(diào)節(jié)的,但是有一個對調(diào)整范圍的限制。
多通道遙感
通常情況下,目標是同時被多個探頭測量。由于系統(tǒng)測量不斷變化的電場,每個探頭激勵電壓必須同步或探針會互相干擾。如果他們不同步,一個探頭將努力增加電場,另一個則試圖減少它,其結果將是一個錯誤的讀數(shù)。電子驅動器可以被配置為主或副,主系統(tǒng)為副系統(tǒng)設置了多通道同步系統(tǒng)。
目標材料的影響
該感應電場正在尋求一個導電表面。只要目標是一個導體,電容傳感器不會受到目標材料影響,他們會衡量所有導線,如黃銅,鋼,鋁,或咸水作為相同。由于感應電場在導體表面停止,目標厚度不影響測量。
測量非導體
電容式傳感器是最經(jīng)常被用來衡量在導電目標位置的變化。但電容式傳感器可以有效測量存在,密度,厚度以及非導體的位置。非導電材料,如塑料比空氣有不同的電介質常數(shù)。介電常數(shù)決定兩個導體之間不導電材料如何影響電容。當一個非導體插入探頭和一個固定的參考指標之間,感應場穿過材料到接地目標。該非導電材料的出現(xiàn)改變介電常數(shù),因此改變電容。電容會鑒于材料的密度或厚度而改變。