《數(shù)學思想方法》復習題三

上傳人:jun****875 文檔編號:17765681 上傳時間:2020-12-05 格式:DOC 頁數(shù):5 大?。?7.91KB
收藏 版權(quán)申訴 舉報 下載
《數(shù)學思想方法》復習題三_第1頁
第1頁 / 共5頁
《數(shù)學思想方法》復習題三_第2頁
第2頁 / 共5頁
《數(shù)學思想方法》復習題三_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《數(shù)學思想方法》復習題三》由會員分享,可在線閱讀,更多相關(guān)《《數(shù)學思想方法》復習題三(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、《數(shù)學思想方法》復習題三 1.為什么說《幾何原本》是一個封閉的演繹體系? ①因為在《幾何原本》中,除了推導時所需要的邏輯規(guī)則外,每個定理的證明所采用的論據(jù)均是公設(shè)、公理或前面已經(jīng)證明過的定理,并且引入的概念(除原始概念)也基本上是符合邏輯上對概念下定義的要求,原則上不再依賴其它東西。因此《幾何原本》是一個封閉的演繹體系。②另外,《幾何原本》的理論體系回避任何與社會生產(chǎn)現(xiàn)實生活有關(guān)的應用問題,因此對于社會生活的各個領(lǐng)域來說,它也是封閉的。③所以,《幾何原本》是一個封閉的演繹體系。 2.為什么說最早使用數(shù)學模型方法的是中國人? :①因為在中國漢代的古算書《九章算術(shù)》中就已經(jīng)系統(tǒng)地使用了數(shù)學

2、模型?!毒耪滤阈g(shù)》將246個題目歸結(jié)為九類,即九種不同的數(shù)學模型,分列為九章。②它在每一章中所設(shè)置的問題,都是從大量的實際問題中選擇具有典型意義的現(xiàn)實原型,然后再通過“術(shù)”(即算法)轉(zhuǎn)化成數(shù)學模型。其中有些章就是專門探討某種數(shù)學模型的應用,③例如“勾股”、“方程”等章。這在世界數(shù)學史上是最早的。因此,我們說最早使用數(shù)學模型方法的是中國人。 3.什么是類比猜想?并舉一個例子說明。 ①人們運用類比法,根據(jù)一類事物所具有的某種屬性,得出與其類似的事物也具有這種屬性的一種推測性的判斷,即猜想,這種思想方法稱為類比猜想。②例如,分式與分數(shù)非常相似,只不過是用字母替代數(shù)而已。因此,我們可以猜想,分式與

3、分數(shù)在定義、基本性質(zhì)、約分、通分、四則運算等方面都是對應相似的。 4.簡述表層類比,并用舉例說明。 :①表層類比是根據(jù)兩個被比較對象的表面形式或結(jié)構(gòu)上的相似所進行的類比。這種類比可靠性較差,結(jié)論具有很大的或然性。②例如,從類比出是錯誤的,而類比出在數(shù)列極限存在的條件下是正確的。③又如,由三角形內(nèi)角平分線性質(zhì),類比得到三角形外角平分線性質(zhì),就是一種結(jié)構(gòu)上的類比。 5.數(shù)學思想方法教學為什么要遵循循序漸進原則?試舉例說明。 :①數(shù)學思想方法的形成難于知識的理解和一般技能的掌握,它需要學生深入理解事物之間的本質(zhì)聯(lián)系。②學生對每種數(shù)學思想方法的認識都是在反復理解和運用中形成的,是從個別到一般,

4、從具體到抽象,從感性到理性,從低級到高級的沿著螺旋式方向上升的。③例如,學生理解數(shù)形結(jié)合方法可從小學的畫示意圖找數(shù)量關(guān)系著手孕育;在學習數(shù)軸時,要求學生會借助數(shù)軸來表示相反數(shù)、絕對值、比較有理數(shù)的大小等。在數(shù)列極限存在的條件下是正確的。③又如,由三角形內(nèi)角平分線性質(zhì),類比得到三角形外角平分線性質(zhì),就是一種結(jié)構(gòu)上的類比。 1.為什么說數(shù)學模型方法是一種迂回式化歸? 正確答案:①運用數(shù)學模型方法解決問題時,不是直接求出實際問題的解,因為這樣做往往是行不通的或者花費過分昂貴。②而是先將實際問題化歸為一個合適的數(shù)學模型,然后通過求數(shù)學模型的解間接求出原實際問題的解,走的是一條迂回的道路。③因此,我

5、們說數(shù)學模型方法是一種迂回式化歸。 2.特殊化在數(shù)學教學中的作用有哪些? 正確答案:①利用特殊值(圖形)解選擇題。②利用特殊化探求問題結(jié)論。③利用特例檢驗一般結(jié)果。④利用特殊化探索解題思路。 3.為什么數(shù)形結(jié)合方法在數(shù)學中有著非常廣泛的應用? 正確答案:①數(shù)學研究的是現(xiàn)實世界的數(shù)量關(guān)系和空間形式,而現(xiàn)實世界本身是同時兼?zhèn)鋽?shù)與形兩種屬性的,既不存在有數(shù)無形的客觀對象,也不存在有形無數(shù)的客觀對象。②因此,在數(shù)學發(fā)展的進程中,數(shù)和形常常結(jié)合在一起,在內(nèi)容上互相聯(lián)系,在方法上互相滲透,在一定條件下互相轉(zhuǎn)化。③充分運用數(shù)形結(jié)合方法解決數(shù)學問題,對于溝通代數(shù)、三角、幾何各分支之間的聯(lián)系,提高分析問

6、題、解決問題的能力具有重要作用。 4.什么是公理方法和公理體系? 正確答案:簡要地說就是從初始概念和公理出發(fā),按照一定的規(guī)律定義出其他所有的概念,推導出其他一切命題的一種演繹方法(5分)。公里體系由初始命題、公理、邏輯規(guī)則、定理等構(gòu)成(5分)。 5.簡述數(shù)學思想方法教學的幾個主要階段。 正確答案: ① 潛意識階段——在這個階段學生只注意數(shù)學知識的學習,注意知識積累,而未曾注意到對這些知識起到橫向聯(lián)系和固定作用的思想方法,或者只是處于一種“朦朦朧朧”、“若有所悟”的狀況;(3分) ②明朗化階段——隨著運用同一種數(shù)學思想方法解決不同的數(shù)學問題的實踐機會的增多,隱藏在數(shù)學知識后面的思想方

7、法就會逐漸引起學生的注意和思考,直至產(chǎn)生某種程度的領(lǐng)悟。當經(jīng)驗和領(lǐng)悟積累到一定程度時,這種事實上已經(jīng)被應用多次的思想方法就會凸現(xiàn)出來,學生開始理解解題過程中所使用的方法與策略,并且概括總結(jié)出這一思想方法;(3分) ③深刻理解階段——在這個階段,學生基本上能正確運用某種數(shù)學思想方法進行探索和思考,以求得問題的解決。同時,在解決問題的實踐過程中,學生又將加深了對數(shù)學思想方法的理解,并養(yǎng)成了有意識地、自覺地運用數(shù)學思想方法解決問題的思維習慣。(4分) 1.模型化的方法、開放性的歸納體系及算法化的內(nèi)容之間的關(guān)系 正確答案:模型化的方法與開放性的歸納體系及算法化的內(nèi)容之間是互相適應并且互相促進的。

8、(2分)雖然,各個數(shù)學模型之間也有一定的聯(lián)系,但是它們更具有相對獨立性。一個數(shù)學模型的建立與其它數(shù)學模型之間并不存在邏輯依賴關(guān)系。正因為如此,所以可以根據(jù)需要隨時從社會實踐中提煉出新的數(shù)學模型(3分)。另一方面,由于運用模型化的方法研究數(shù)學,新的數(shù)學模型從何產(chǎn)生?只有尋找現(xiàn)實原型、立足于現(xiàn)實問題的研究,這就不可能產(chǎn)生封閉式的演繹體系(2分)。解決實際問題還提出了這樣的要求:對由模型化方法求得的結(jié)果必須能夠檢驗其正確性和合理性,為了能夠求得實際可用的結(jié)果,于是算法化的內(nèi)容也就應運而生(3分)。 2.算術(shù)與代數(shù)的解題方法基本思想有何區(qū)別? 正確答案:區(qū)別在于算術(shù)解題參與的量必須是已知的量,而代

9、數(shù)解題允許未知的量參與運算(5分);算術(shù)方法的關(guān)鍵之處是列算式,而代數(shù)方法的關(guān)鍵之處列方程(5分)。 3.簡單說明社會科學數(shù)學化的主要原因? 正確答案:第一,社會管理需要精確化的定量依據(jù)(2.5分);第二,社會科學理論體系的發(fā)展需要精確化(2.5分);第三,出現(xiàn)了一些適合研究社會歷史現(xiàn)象的新的數(shù)學分支(2.5分);第四,電子計算機的發(fā)展與應用(2.5分)。 4.第一次數(shù)學危機最終如何解決了? 正確答案:第一次數(shù)學危機并沒有輕易地很快解決。最后約在公元前370年,才由柏拉圖的學生歐多克斯解決了(5分)。他創(chuàng)立了新的比例理論,微妙地處理了可公度和不可公度。他處理不可公度的方法,被歐幾里得《

10、幾何原本》第二卷(比例論)收錄。這個問題到19世紀戴德金及康托爾等人建立了現(xiàn)代實數(shù)理論才算徹底解決(5分)。 5.何謂化歸方法?它遵循哪三個原則? 正確答案:所謂化歸方法,就是將一個問題進行變形,使其歸結(jié)為另一已能解決的問題,既然已可解決,那么也就解決了(5分)?;瘹w方法遵循三個原則:簡單化原則、熟悉化原則、和諧化原則(5分)。 1.我國數(shù)學教育存在哪些問題? 正確答案:①數(shù)學教學重結(jié)果,輕過程;重解題訓練,輕智力、情感開發(fā);不重視創(chuàng)新能力培養(yǎng),雖然學生考試分數(shù)高,但是學習能力低下;②重模仿,輕探索,學習缺少主動性,缺乏判斷力和獨立思考能力;③學生學業(yè)負擔過重。原因是課堂教學效益不高,

11、教學圍繞升學考試指揮棒轉(zhuǎn),不斷重復訓練各種題型和模擬考試,不少教師心存以量求質(zhì)的想法,造成學生學業(yè)負擔過重。 2.《幾何原本》貫徹哪兩條邏輯要求? 正確答案:《幾何原本》貫徹了兩條邏輯要求。①第一,公理必須是明顯的,因而是無需加以證明的,其是否真實應受推出的結(jié)果的檢驗,但它仍是不加證明而采用的命題;初始概念必須是直接可以理解的,因而無需加以定義。②第二,由公理證明定理時,必須遵守邏輯規(guī)律與邏輯規(guī)則;同樣,通過初始概念以直接或間接方式對派生概念下定義時,必須遵守下定義的邏輯規(guī)則。 3.簡述數(shù)學抽象的特征。 正確答案:數(shù)學抽象有以下特征:①數(shù)學抽象具有無物質(zhì)性;②數(shù)學抽象具有層次性;③數(shù)學

12、抽象過程要憑借分析或直覺;④數(shù)學的抽象不僅有概念抽象還有方法抽象 4.什么是算法的有限性特點?試舉一個不符合算法有限性特點的例子。 ①算法得有限性是指一個算法必須在有限步之內(nèi)終止。②例如,對初始數(shù)據(jù)20和3,計算過程無論怎樣延續(xù)這個過程都不能結(jié)束,同時也不會出現(xiàn)中斷。如果在某一處中斷過程,我們只能得到一個近似的、不準確的結(jié)果。而且如果在某一步中斷計算過程已經(jīng)不是執(zhí)行原來的算法??梢姡M小數(shù)除法對于20和3這組數(shù)不符合算法的“有限性”特點。 5.簡述將“化隱為顯”列為數(shù)學思想方法教學的一條原則的理由。 正確答案:①由于數(shù)學思想方法往往隱含在知識的背后,知識教學雖然蘊含著思想方法,但是如

13、果不是有意識地把數(shù)學思想方法作為教學對象,在數(shù)學學習時,學生常常只注意到處于表層的數(shù)學知識,而注意不到處于深層的思想方法。②因此,進行數(shù)學思想方法教學時必須以數(shù)學知識為載體,把隱藏在知識背后的思想方法顯示出來,使之明朗化,才能通過知識教學過程達到思想方法教學之目的。 1、簡述《國家數(shù)學課程標準》的幾個主要特點。 答: 2001年6月教育部推行了試用的九年義務教育階段《國家數(shù)學課程標準》(實驗稿),充分體現(xiàn)了數(shù)學課程改革與發(fā)展的內(nèi)涵、特點和具體目標,并呈現(xiàn)下列八個特點: 1)、把“現(xiàn)實數(shù)學”作為數(shù)學課程的一項內(nèi)容。即為學生準備的數(shù)學應該是與現(xiàn)實世界密切聯(lián)系的數(shù)學,且能夠在實際中得到應用的數(shù)學

14、。 2)、把“數(shù)學化”作為數(shù)學課程的一個目標。學生學習數(shù)學化的過程是將學生的現(xiàn)實數(shù)學進一步提高、抽象的過程。 3)、把“再創(chuàng)造”作為數(shù)學教育的一條原則。把“已完成的數(shù)學”當成是“未完成的數(shù)學”來教,給學生提供“再創(chuàng)造”的機會。 4)、把“問題解決”作為數(shù)學教學的一種模式?!稊?shù)學課程標準》在“學段目標”中的“解決問題”方面的具體闡述,實際上提出了“問題解決”的教學模式,即:情境—問題—探索—結(jié)論—反思。 5)、把“數(shù)學思想方法”作為課程體系的一條主線。要求學生掌握基本的數(shù)學思想方法。 6)、把“數(shù)學活動”作為數(shù)學課程的一個方面。強調(diào)學生的數(shù)學活動,注重“向?qū)W生提供充分從事數(shù)學活動的機會”,幫助他

15、們“獲得廣泛的數(shù)學活動的經(jīng)驗”。 7)、把“合作交流”看成學生學習數(shù)學的一種方式。要讓學生在解決問題的過程中“學會與他人合作”,并能“與他人交流思維的過程和結(jié)果”。 8)、把“現(xiàn)代信息技術(shù)”作為學生學習數(shù)學的一種工具。 1、 論述社會科學數(shù)學化的主要原因。 答:從整個科學發(fā)展趨勢來看,社會科學的數(shù)學化也是必 然的趨勢,其主要原因可以歸結(jié)為有下面四個方面: 第一,社會管理需要精確化的定量依據(jù),這是促使社會科學 數(shù)學化的最根本的因素。 第二,社會科學的各分支逐步走向成熟,社會科學理論體系 的發(fā)展也需要精確化。 第三,隨著數(shù)學的進一步發(fā)展,它出現(xiàn)了一些適合研究社會 歷史現(xiàn)象的新的數(shù)學分支。 第

16、四,電子計算機的發(fā)展與應用,使非常復雜社會現(xiàn)象經(jīng)過 量化后可以進行數(shù)值處理。 2、 論述數(shù)學的三次危機對數(shù)學發(fā)展的作用。 答:第一次數(shù)學危機促使人們?nèi)フJ識和理解無理數(shù),導致 了公理幾何與邏輯的產(chǎn)生。 第二次數(shù)學危機促使人們?nèi)ド钊胩接憣崝?shù)理論,導致了分析 基礎(chǔ)理論的完善和集合論的產(chǎn)生。 第三次數(shù)學危機促使人們研究和分析數(shù)學悖論,導致了數(shù)理 邏輯和一批現(xiàn)代數(shù)學的產(chǎn)生。 由此可見,數(shù)學危機的解決,往往給數(shù)學帶來新的內(nèi)容,新 的進展,甚至引起革命性的變革,這也反映出矛盾斗爭是事物發(fā) 展的歷史動力這一基本原理。整個數(shù)學的發(fā)展史就是矛盾斗爭的 歷史,斗爭的結(jié)果就是數(shù)學領(lǐng)域的發(fā)展 簡述公理方法歷史發(fā)

17、展的各個階段 答:公理方法經(jīng)歷了具體的公理體系、抽象的公理體系和形式化的公理體系三個階段。第一個具體的公理體系就是歐幾里得的《幾何原本》。非歐幾何是抽象的公理體系的典型代表。希爾伯特的《幾何基礎(chǔ)》開創(chuàng)了形式化的公理體系的先河,現(xiàn)代數(shù)學的幾乎所有理論都是用形式公理體系表述出來的,現(xiàn)代科學也盡量采用形式公理法作為研究和表述手段。 在實施數(shù)學思想方法教學時應注意哪些問題?p205 答:(1)要把數(shù)學思想方法的學習納入教學目標,并在教案中設(shè)計好數(shù)學思想方法的教學內(nèi)容和教學過程,這就要求教師具備較高的數(shù)學修養(yǎng),具備數(shù)學方法論、數(shù)學發(fā)展史、數(shù)學思想方法的基礎(chǔ)知識,更需要教師更新教學觀念,不斷提高對教

18、學重要性的認識。 (2)重視數(shù)學知識發(fā)生、發(fā)展的過程,認真設(shè)計數(shù)學思想方法教學的目標;(3)做好數(shù)學思想方法教學的鋪墊工作和鞏固工作; (4)不同類型的數(shù)學思想方法應有不同的教學要求; (5)注意不同數(shù)學思想方法的綜合運用。 簡述計算機在數(shù)學方面的三種新用途。p119.3 答:(1)電子計算機把數(shù)學家從繁重的、單調(diào)的、重復性的腦力勞動中解放出來,讓他們有更多的時間從事更富創(chuàng)造性的抽象思維工作,從而更有利于數(shù)學理論的發(fā)展; (2)借助電子計算機的計算,人們可以得到一些新的猜想,并據(jù)此進一步作出理論證明;也可以對已有的結(jié)論進行驗證;還可以用計算機來證明某些理論問題; (3)電子計算機的發(fā)展本身也提出了許多數(shù)學理論問題。 簡述計算工具的發(fā)展。p114-116 答:計算工具的發(fā)展大致經(jīng)歷了:古代的計算工具;機械式計算工具;電動式計算機;機電式計算機;電子計算機。 33.簡述小學數(shù)學加強數(shù)學思想方法教學的重要性,具體表現(xiàn)?p185(p307) 答:(1)數(shù)學思想方法是知識向能力過渡的橋梁; (2)人的數(shù)學智能依賴于數(shù)學思想方法的掌握; (3)數(shù)學思想方法能有效地提高人的思維品質(zhì); (4)數(shù)學思想方法能有效地促進人的全面發(fā)展。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!