《浙江省2019年中考數(shù)學 第六單元 圓 課時訓練27 直線與圓的位置關系練習 (新版)浙教版》由會員分享,可在線閱讀,更多相關《浙江省2019年中考數(shù)學 第六單元 圓 課時訓練27 直線與圓的位置關系練習 (新版)浙教版(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 真誠為您提供優(yōu)質參考資料,若有不當之處,請指正。
課時訓練(二十七) 直線與圓的位置關系
|夯實基礎|
1.[xx常州] 如圖K27-1,AB是☉O的直徑,MN是☉O的切線,切點為N,如果∠MNB=52,則∠NOA的度數(shù)為( )
圖K27-1
A.76 B.56
C.54 D.52
2.[xx濱州] 若正方形的外接圓半徑為2,則其內切圓半徑為 ( )
A.2 B.22 C.22 D.1
3.[xx日照] 如圖K27-2,AB是☉O的直徑,PA切☉O于點A,連結PO并延長交☉O于點C,連結AC,AB=10,∠P=30,則AC的長度是 ( )
2、圖K27-2
A.53 B.52 C.5 D.52
4.[xx河北] 如圖K27-3,點I為△ABC的內心,AB=4,AC=3,BC=2,將∠ACB平移使其頂點與I重合,則圖中陰影部分的周長為 ( )
圖K27-3
A.4.5 B.4 C.3 D.2
5.[xx杭州] 如圖K27-4,AT切☉O于點A,AB是☉O的直徑,若∠ABT=40,則∠ATB= .
圖K27-4
6.[xx棗莊] 如圖K27-5,在平行四邊形ABCD中,AB為☉O的直徑,☉O與DC相切于點E,與AD相交于點F,已知AB=12,∠C=60,則弧FE的長為 .
3、圖K27-5
7.[xx包頭] 如圖K27-6,AB是☉O的直徑,點C在☉O上,過點C的切線與BA的延長線交于點D,點E在BC上(不與點B,C重合),連結BE,CE.若∠D=40,則∠BEC= 度.
圖K27-6
8.[xx岳陽] 如圖K27-7,以AB為直徑的☉O與CE相切于點C,CE交AB的延長線于點E,直徑AB=18,∠A=30,弦CD⊥AB,垂足為點F,連結AC,OC,則下列結論正確的是 .(寫出所有正確結論的序號)
①BC=BD;②扇形OBC的面積為274π;③△OCF∽△OEC;④若點P為線段OA上一動點,則APOP有最大值20.25.
圖K27-7
9.[
4、xx葫蘆島] 如圖K27-8,AB是☉O的直徑,AC=BC,E是OB的中點,連結CE并延長到點F,使EF=CE,連結AF交☉O于點D,連結BD,BF.
(1)求證:直線BF是☉O的切線;
(2)若OB=2,求BD的長.
圖K27-8
10.[xx沈陽] 如圖K27-9,BE是☉O的直徑,點A和點D是☉O上的兩點,過點A作☉O的切線交BE延長線于點C.
(1)若∠ADE=25,求∠C的度數(shù);
(2)若AB=AC,CE=2,求☉O半徑的長.
圖K27-9
|拓展提升|
11.[xx寧波] 如圖K27-10,正方形ABCD的邊長為8,M是AB的中點,P是BC邊上的動點,連結PM
5、,以點P為圓心,PM長為半徑作☉P.當☉P與正方形ABCD的邊相切時,BP的長為 .
圖K27-10
12.[xx南京] 結果如此巧合!
下面是小穎對一道題目的解答.
題目:如圖K27-11,Rt△ABC的內切圓與斜邊AB相切于點D,AD=3,BD=4,求△ABC的面積.
圖K27-11
解:設△ABC的內切圓分別與AC,BC相切于點E,F,CE的長為x.
根據(jù)切線長定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根據(jù)勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=12ACBC
=12(x+3)(x
6、+4)
=12(x2+7x+12)
=12(12+12)
=12.
小穎發(fā)現(xiàn)12恰好就是34,即△ABC的面積等于AD與BD的積.這僅僅是巧合嗎?
請你幫她完成下面的探索.
已知:△ABC的內切圓與AB相切于點D,AD=m,BD=n.
可以一般化嗎?
(1)若∠C=90,求證:△ABC的面積等于mn.
倒過來思考呢?
(2)若ACBC=2mn,求證:∠C=90.
改變一下條件……
(3)若∠C=60,用m,n表示△ABC的面積.
參考答案
1.A [解析] ∵N為切點,∴MN⊥ON,則∠MNO=90,
已知∠MNB=52,∴∠BNO=38,
∵ON=OB,
7、∴∠BNO=∠B,∴∠NOA=2∠BNO=76,選項A正確.
2.A [解析] 如圖,由“正方形的外接圓半徑為2”可得OB=2,∠OBC=45,由切線性質可得∠OCB=90,所以△OBC為等腰直角三角形,所以OC=22OB=2.
3.A [解析] 過點O作OD⊥AC于點D,
∵AB是☉O的直徑,PA切☉O于點A,
∴AB⊥AP,∴∠BAP=90.
∵∠P=30,
∴∠AOP=60,∴∠AOC=120.
∵OA=OC,∴∠OAD=30.
∵AB=10,∴OA=5,
∴OD=12AO=52,∴AD=AO2-OD2=532,
∴AC=2AD=53,故選A.
4.B [解析] 設
8、△ABC的AB邊上的高為h,△MNI的周長為a,MN邊上的高為r,則△ABC的內切圓半徑為r,∴△ABC的面積=ABh12=(AB+BC+AC)r12,∴4h=9r,∴rh=49.∵△MNI∽△ABC,∴△MNI的周長△ABC的周長=49,∴△MNI的周長=49(4+3+2)=4,故選B.
5.50 [解析] ∵AT是☉O的切線,∴∠TAB=90,又∵∠ABT=40,∴∠ATB=50.
6.π [解析] 如圖,連結OE,OF,
∵CD是☉O的切線,
∴OE⊥CD,∴∠OED=90.
∵四邊形ABCD是平行四邊形,∠C=60,
∴∠A=∠C=60,∠D=120.
∵OA=OF,∴∠
9、A=∠OFA=60,
∴∠DFO=120,
∴∠EOF=360-∠D-∠DFO-∠DEO=30,
∴EF的長=30π1806=π.
7.115 [解析] 連結OC,AC,由CD是切線得∠OCD=90.又因為∠D=40,可得∠COD=50.因為OA=OC,可得∠OAC=65.因為四邊形ACEB是圓內接四邊形,由圓內接四邊形對角互補得到∠BEC的度數(shù).
8.①③④ [解析] ∵AB是☉O的直徑,且CD⊥AB,
∴BC=BD,故①正確;
∵∠A=30,∴∠COB=60,
∴扇形OBC的面積=60360πAB22=272π,故②錯誤;
∵CE是☉O的切線,∴∠OCE=90,
∴∠O
10、CD=∠OEC,∠EOC=∠COF,∴△OCF∽△OEC,故③正確;
設AP=x,則OP=9-x,
∴APOP=x(9-x)=-x2+9x=-x-922+814,
∴當x=92時,APOP的最大值為814=20.25,故④正確.故答案為①③④.
9.解:(1)證明:連結OC,
∵AB是☉O的直徑,AC=BC,
∴∠AOC=∠BOC=90.
∵E是OB的中點,EF=CE,∴△COE≌△FBE.
∴∠FBE=∠COE=90.∴直線BF是☉O的切線.
(2)∵△COE≌△FBE,OB=2,∴BF=OC=2.
在Rt△ABF中,由勾股定理得AF=25.
∵AB是☉O的直徑,∴∠A
11、DB=90,
∴△ADB∽△ABF,∴BDAB=BFAF,
即BD4=225,解得BD=455.
10.解:(1)如圖,連結OA,由切線的性質可得∠OAC=90,∵∠ADE=25,∴∠AOC=50,∴∠C=40.
(2)∵AB=AC,∴∠B=∠C.
∵∠AOC=2∠B,∴∠AOC=2∠C.
∵∠OAC=90,∴∠AOC+∠C=90,
即3∠C=90,∴∠C=30.
∵∠OAC=90,∴OA=12OC.
設☉O的半徑為r,∵CE=2,
∴r=12(r+2).∴r=2.∴☉O的半徑為2.
11.3或43 [解析] (1)當☉P與DC相切時,如圖①所示,設BP=x,則PC=8-
12、x.
∵DC與圓相切,∴PC=PM.
又∵M是AB中點,∴BM=4.
在Rt△BMP中,根據(jù)勾股定理可得BM2+BP2=MP2,
∴x2+42=(8-x)2,解得x=3,∴BP=3.
(2)如圖②所示,當☉P與DA相切時,
過點P作PE⊥AD,交AD于點E.
∵☉P與DA相切于點E,∴EP=MP=8.
在Rt△BMP中,根據(jù)勾股定理可得BM2+BP2=MP2,
∴BP=82-42=43.
綜上所述,BP的值為3或43.
12.[解析] (1)根據(jù)題目中所給的方法由切線長定理知AE=AD=m,BF=BD=n,CF=CE=x,根據(jù)勾股定理得(x+m)2+(x+n)2=
13、(m+n)2,即x2+(m+n)x=mn,再利用三角形的面積公式計算;
(2)由ACBC=2mn得(x+m)(x+n)=2mn,即x2+(m+n)x=mn,再利用勾股定理逆定理求證;
(3)作AG⊥BC,由三角函數(shù)得AG=ACsin 60=32(x+m),CG=ACcos 60=12(x+m),BG=BC-CG=(x+n)-12(x+m),在Rt△ABG中,根據(jù)勾股定理可得x2+(m+n)x=3mn,最后利用三角形的面積公式計算可得.
解:設△ABC的內切圓分別與AC,BC相切于點E,F,CE的長為x.
根據(jù)切線長定理,得AE=AD=m,BF=BD=n,CF=CE=x.
(1)證明:
14、如圖,在Rt△ABC中,根據(jù)勾股定理,得(x+m)2+(x+n)2=(m+n)2.
整理,得x2+(m+n)x=mn.
所以S△ABC=12ACBC
=12(x+m)(x+n)
=12[x2+(m+n)x+mn]
=12(mn+mn)
=mn.
(2)證明:由ACBC=2mn,
得(x+m)(x+n)=2mn,
整理,得x2+(m+n)x=mn,
所以AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=m2+n2+2mn=(m+n)2=AB2.
根據(jù)勾股定理的逆定理,得∠C=90.
(3)如圖,過點A作AG⊥BC,垂足為G.
在Rt△ACG中,AG=ACsin 60=32(x+m),CG=ACcos 60=12(x+m).
所以BG=BC-CG=(x+n)-12(x+m).
在Rt△ABG中,根據(jù)勾股定理,得
32(x+m)2+(x+n)-12(x+m)2=(m+n)2,
整理,得x2+(m+n)x=3mn,
所以S△ABC=12BCAG
=12(x+n)32(x+m)
=34[x2+(m+n)x+mn]
=34(3mn+mn)
=3mn.
10 / 10