《高考數(shù)學復習:第八章 :第三節(jié)圓的方程突破熱點題型》由會員分享,可在線閱讀,更多相關《高考數(shù)學復習:第八章 :第三節(jié)圓的方程突破熱點題型(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、△+△2019年數(shù)學高考教學資料△+△
第三節(jié) 圓 的 方 程
考點一
求圓的方程
[例1] (1)經(jīng)過點A(5,2),B(3,-2),且圓心在直線2x-y-3=0上的圓的方程為________________.
(2)(2013·江西高考)若圓C經(jīng)過坐標原點和點(4,0),且與直線y=1相切,則圓C的方程是________________.
[自主解答] (1)法一:由題知kAB=2,A,B的中點為(4,0),設圓心為C(a,b).
∵圓過A(5,2),B(3,-2)兩點,
∴圓心一定在線段AB的垂直平分線上.
則解得∴C(2,1),
r
2、=|CA|==.
∴所求圓的方程為(x-2)2+(y-1)2=10.
法二:設圓的方程為(x-a)2+(y-b)2=r2,
則 解得
故圓的方程為(x-2)2+(y-1)2=10.
法三:設圓的方程為
x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
則
解得D=-4,E=-2,F(xiàn)=-5.
∴所求圓的方程為x2+y2-4x-2y-5=0.
(2)由已知可設圓心為(2,b),由22+b2=(1-b)2=r2,得b=-,r2=.
故圓C的方程為(x-2)2+2=.
[答案] (1)x2+y2-4x-2y-5=0(或(x-2)2+(y-1)2=10) (2)
3、(x-2)2+2=
【互動探究】
本例(2)中“與直線y=1相切”改為“圓心在y=1上”,結(jié)果如何?
解:∵圓過點O(0,0)和點(4,0).
∴圓心在直線x=2上,
又∵圓心在y=1上,
∴圓心的坐標為(2,1),半徑r==.
因此,圓的方程為(x-2)2+(y-1)2=5.
【方法規(guī)律】
求圓的方程的兩種方法
(1)直接法:根據(jù)圓的幾何性質(zhì),直接求出圓心坐標和半徑,進而寫出方程.
(2)待定系數(shù)法:若已知條件與圓心(a,b)和半徑r有關,則設圓的標準方程,依據(jù)已知條件列出關于a,b,r的方程組,從而求出a,b,r的值.
求下列圓的方程:
(1)圓心
4、在直線y=-4x上,且與直線l:x+y-1=0相切于點P(3,-2);
(2)過三點A(1,12),B(7,10),C(-9,2).
解:(1)法一:設圓的標準方程為(x-a)2+(y-b)2=r2,
則有解得a=1,b=-4,r=2.
故所求圓的方程為(x-1)2+(y+4)2=8.
法二:過切點且與x+y-1=0垂直的直線為y+2=x-3.
與y=-4x聯(lián)立可得圓心為(1,-4),
所以半徑r==2.
故所求圓的方程為(x-1)2+(y+4)2=8.
(2)法一:設圓的一般方程為x2+y2+Dx+Ey+F=0(D2+E2-4F>0).
則
解得D=-2,E=-4
5、,F(xiàn)=-95,
所以所求圓的方程為x2+y2-2x-4y-95=0.
法二:由A(1,12),B(7,10),得AB的中點坐標為(4,11),
kAB=-,則AB的中垂線方程為3x-y-1=0.
同理得AC的中垂線方程為x+y-3=0.[來源:]
聯(lián)立得
即圓心坐標為(1,2),半徑r==10,
所以所求圓的方程為(x-1)2+(y-2)2=100.
考點二
與圓有關的軌跡問題
[例2] (2013·新課標全國卷Ⅰ)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程
6、;
(2)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點,當圓P的半徑最長時,求|AB|.
[自主解答] 由已知得圓M的圓心為M(-1,0),半徑r1=1;圓N的圓心為N(1,0),半徑r2=3.
設圓P的圓心為P(x,y),半徑為R.
(1)因為圓P與圓M外切并且與圓N內(nèi)切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.
由橢圓的定義可知,曲線C是以M,N為左、右焦點,長半軸長為2,短半軸長為的橢圓(左頂點除外),其方程為+=1(x≠-2).
(2)對于曲線C上任意一點P(x,y),[來源:]
由于|PM|-|PN|=2R-2≤2,所以R≤2,
7、
當且僅當圓P的圓心為(2,0)時,R=2.
所以當圓P的半徑最長時,其方程為(x-2)2+y2=4.
若l的傾斜角為90°,則l與y軸重合,可得|AB|=2.
若l的傾斜角不為90°,由r1≠R知l不平行于x軸,設l與x軸的交點為Q,則=,可求得Q(-4,0),
所以可設l:y=k(x+4).
由l與圓M相切得=1,解得k=±.
當k=時,將y=x+代入+=1,并整理得7x2+8x-8=0,
解得x1=,x2=.
所以|AB|=|x2-x1|=.
當k=-時,由圖形的對稱性可知|AB|=.
綜上,|AB|=2或|AB|=.
【方法規(guī)
8、律】
求與圓有關的軌跡方程的方法
已知直角三角形ABC的斜邊為AB,且A(-1,0),B(3,0),求:
(1)直角頂點C的軌跡方程;
(2)直角邊BC的中點M的軌跡方程.
解:(1)法一:設頂點C(x,y),因為AC⊥BC,所以x≠3且x≠-1.
又kAC=,kBC=,且kAC·kBC=-1,
所以·=-1,即x2+y2-2x-3=0.
因此,直角頂點C的軌跡方程為x2+y2-2x-3=0(x≠3且x≠-1).
法二:設AB的中點為D,由中點坐標公式得D(1,0),由直角三角形的性質(zhì)知,|CD|=|AB|=2,由圓的定義知,動點C的軌跡是以D(1
9、,0)為圓心,2為半徑的圓(由于A,B,C三點不共線,所以應除去與x軸的交點).
所以直角頂點C的軌跡方程為(x-1)2+y2=4(x≠3且x≠-1).
(2)設點M(x,y),點C(x0,y0),因為B(3,0),M是線段BC的中點,由中點坐標公式得x=(x≠3且x≠1),y=,于是有x0=2x-3,y0=2y.
由(1)知,點C在圓(x-1)2+y2=4(x≠3且x≠-1)上運動,將x0=2x-3,y0=2y代入該方程得(2x-4)2+(2y)2=4,即(x-2)2+y2=1(x≠3且x≠1).
因此動點M的軌跡方程為(x-2)2+y2=1(x≠3且x≠1).
高頻考點
考
10、點三 與圓有關的最值問題
1.與圓有關的最值問題,是高考命題的熱點,多以選擇題、填空題的形式呈現(xiàn),試題難度不大,多為容易題、中檔題.
2.高考中主要有以下幾個命題角度:
(1)與圓有關的長度或距離的最值問題;
(2)與圓上的點(x,y)有關的代數(shù)式的最值問題.
例如,形如u=型;形如t=ax+by型;形如(x-a)2+(y-b)2型.
[例3] (1)(2013·重慶高考)設P是圓(x-3)2+(y+1)2=4上的動點,Q是直線x=-3上的動點,則|PQ|的最小值為( )
A.6 B.4 C.3 D
11、.2
(2)(2013·山東高考)過點(3,1)作圓(x-2)2+(y-2)2=4的弦,其中最短弦的長為________.[來源:]
[自主解答] (1)當PQ所在直線過圓心且垂直于直線x=-3時,|PQ|有最小值,且最小值為圓心(3,-1)到直線x=-3的距離減去半徑2,即最小值為4.
(2)設P(3,1),圓心C(2,2),則|PC|=,由題意知最短的弦過P(3,1)且與PC垂直,所以最短弦長為2=2.[來源:][來源:]
[答案] (1)B (2)2
與圓有關的最值問題的常見類型及解題策略
(1)與圓有關的長度或距離的最值問題的解法.一般根據(jù)長度或距離的幾何意義
12、,利用圓的幾何性質(zhì)數(shù)形結(jié)合求解.
(2)與圓上點(x,y)有關代數(shù)式的最值的常見類型及解法.①形如u=型的最值問題,可轉(zhuǎn)化為過點(a,b)和點(x,y)的直線的斜率的最值問題;②形如t=ax+by型的最值問題,可轉(zhuǎn)化為動直線的截距的最值問題;③形如(x-a)2+(y-b)2型的最值問題,可轉(zhuǎn)化為動點到定點的距離平方的最值問題.
已知M為圓C:x2+y2-4x-14y+45=0上任意一點,且點Q(-2,3).
(1)求|MQ|的最大值和最小值;
(2)若M(m,n),求的最大值和最小值.
解:(1)由圓C:x2+y2-4x-14y+45=0,可得(x-2)2+(y-7)2=8,
13、所以圓心C的坐標為(2,7),半徑r=2.
又|QC|==4.
所以|MQ|max=4+2=6,
|MQ|min=4-2=2.
(2)可知表示直線MQ的斜率,
設直線MQ的方程為y-3=k(x+2),
即kx-y+2k+3=0,則=k.
由直線MQ與圓C有交點,所以≤2.
可得2-≤k≤2+,
所以的最大值為2+,最小值為2-.
——————————[課堂歸納——通法領悟]————————————————
1種方法——待定系數(shù)法求圓的方程
(1)若已知條件與圓心(a,b)和半徑r有關,則設圓的標準方程,依據(jù)已知條件列出關于a,b,r的方程組,從而求出a,b,r的值;
(2)若已知條件沒有明確給出圓心或半徑,則選擇圓的一般方程,依據(jù)已知條件列出關于D,E,F(xiàn)的方程組,進而求出D,E,F(xiàn)的值.
3個性質(zhì)——常用到的圓的三個性質(zhì)
在解決與圓有關的問題時,借助于圓的幾何性質(zhì),往往會使得思路簡潔明了,簡化思路,簡便運算.
(1)圓心在過切點且與切線垂直的直線上;
(2)圓心在任意一弦的垂直平分線上;
(3)兩圓相切時,切點與兩圓圓心共線.
高考數(shù)學復習精品
高考數(shù)學復習精品