汽車四輪轉(zhuǎn)向傳動(dòng)系統(tǒng)設(shè)計(jì)
資源目錄里展示的全都有預(yù)覽可以查看的噢,,下載就有,,請放心下載,原稿可自行編輯修改=【QQ:11970985 可咨詢交流】====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=【QQ:197216396 可咨詢交流】====================
The Mazda Speed Sensing Computerised 4-Wheel Steering System.
Three and a half decades ago, two young Mazda designers arrived at a far-sighted and well-calculated conclusion that was quite revolutionary for the time. In their technical presentation at the October 26, 1962 Japanese Automotive Engineers' Society Technical Conference, Dr Tadashi Okada and engineer Toshiaki summarised their arduous research concerning vehicle dynamics as follows.
1. The basic difference in the characteristics of oversteer and understeer lies in the magnitude of time delay and response.
2. a vehicle that is stable under high speed must possess understeer characteristics
3. the rear wheel tyre reflects heavily on the stability
4. a major improvement on control and stability may be anticipated by means of the automatic rear wheel steering system.
The conclusions and formulations presented by these two engineers established the foundation for Mazda's present-day reputed suspension technology. Over years of dedicated research and development expertise, their original discoveries and theories have contributed to some of the most significant achievements within the recent history of automotive chassis engineering, incorporated by Mazda within its series production products. These developments include the twin trapezoidal link rear suspension, first employed in the original front-wheel drive Mazda 323 (1980) and the Mazda 626 (1982), and then perfected within the updated Mazda 626; the award winning Dynamic Tracking Suspension System of the second generation Mazda RX-7 (1985); and the elaborate E-link rear suspension of the new Mazda 929 (1987).
While various external forces and loads are exerted to the rear wheels of a vehicle as it combats the elements of the law of motion as defined by Sir Isaac Newton, these new suspension systems convert those forces into "4WS effects" which positively aid in vehicle stability and agility.
The Mazda designers' and engineers' ultimate goal was still a positive measure to generate forces for positive controls; a Four-Wheel Steering system.
In 1983, Mazda astonished the automotive world with the introduction of an engineering concept car, the MX-02, exhibited at the Tokyo Motor Show. This four-door Sedan, with generous passenger accommodation on an unusually long wheelbase, incorporated among its numerous advanced features a true 4WS system that aided high-speed stability as well as its low-speed manoeuvring. The degree of rear wheel steering was determined by the measurement of both front wheel steering angle and vehicle speed, by means of a central computer unit.
The MX-02 was followed by another exciting concept car; the MX-03, first exhibited at the Frankfurt Motor Show in September 1985. This sleek four seat futuristic coupe of the 1990s combined a refined electronically-controlled 4WS system with a continually varying torque-split, four-wheel drive system and a powerful three-rotary engine.
Mazda Electronically -Controlled Four-Wheel Steering System:
A Beneficial Technology
Mazda's electronically-controlled, vehicle-speed-sensing Four-Wheel Steering System (4WS) steers the rear wheels in a direction and to a degree most suited to a corresponding vehicle speed range. The system is mechanically and hydraulically actuated, producing greatly enhanced stability, and within certain parameters, agility.
The driver of a Mazda 4WS-equipped car derives five strategic benefits, over and above the conventional vehicle chassis.
Superior cornering stability
1.Improved steering responsiveness and precision
2.High-speed straightline stability
3.Notable improvement in rapid lane-changing manoeuvres
4.Smaller turning radius and tight-space manoeuvrability at low vehicle speed range
The most outstanding advantage of the Mazda 4WS is that it contributes to a notable reduction in driver fatigue over high-speed and extended travelling. This is achieved by optimally:
1.reducing the response delay to steering input and action and
2.eliminating the vehicle's excessive reaction to steering input
In essence, by providing the optimum solution to the phenomena researched by the two young Mazda engineers in the early sixties - by the method advocated by them - the 4WS system has emerged as a fully beneficial technology.
Strategic Construction
The Mazda 4WS consists of a rack-and-pinion front steering system that is hydraulically assisted by a twin-tandem pump main power source, with an overall steering ratio of 14.2:1. The rear wheel steering mechanism is also hydraulically assisted by the main pump and electronically controlled - according to the front steering angle and vehicle speed. The rear steering shaft extends from the rack bar of the front steering gear assembly to the rear steering-phase control unit.
The rear steering system is comprised of the input end of the rear steering shaft, vehicle speed sensors, a steering-phase control unit (determining direction and degree), a power cylinder and an output rod. A centering lock spring is incorporated, which locks the rear system in a neutral (straightforward) position in the event of hydraulic failure. Additionally, a solenoid valve that disengages hydraulic assist (thereby activating the centering lock spring) in case of an electrical failure is included.
The 4WS system varies the phase and ratio of the rear-wheel steering to the front wheels, according to the vehicle speed. It steers the rear wheels toward the opposite phase (direction) of the front wheel during speeds less than 35km/h (22mph) for a tighter turn and "neutralizes" them (to a straightforward direction, as in a conventional two-wheel steering principle) at 35km/h (22mph). Above that speed, the system steers toward the same phase-direction as the front wheels, thereby generating an increased cornering force for stability. The maximun steering angle of the rear wheels extends 5 degrees to either left or right, a measurement that Mazda has determined to be optimally effective and natural to human sensitivity.
Primary Components
1. Vehicle speed sensors Interpret speedometer shelf revolutions and send signal to the electronic computer unit. two sensors, one within the speedometer and the other at the transmission output, are used to crosscheck the other for accuracy and failsafe measures.
2. Steering phase control unit* Conveys to the power steering cylinder booster valve thedirection and stroke of rear wheel steering by the combined movement of the control yoke angle and bevel gear revolutions.
3. Electric stepper motor Performs altering of the yoke angle and bevel gear phasing
4. Rear steering shaft Transmits front wheel steering angle by turning the small bevel gear in the steering phase control unit, which rotates the main bevel gear in the assembly.
5. Control valve Feeds hydraulic pressure to the steering actuator, according to the phase and stroke required for appropriate rear wheel steering.
6. Hydraulic power cylinder Operates the output rod by hydraulic pressure and steers the rear wheels. It locks the rear wheels in a "neutral" (straightforward) position with the centering lock spring, which is activated by a solenoid valve in case of failure to ensure a normal 2WS function for the vehicle.
7. Hydraulic pump. Provides hydraulic pressure to both the front and rear steering systems.
Details of Steering Phase Control Unit
The steering phase control unit alters the direction and degree of rear wheel steering. It consists of a stepper motor that controls the rear steering ratio, a control yoke, a swing arm, a main bevel gear engaged to the rear steering shaft via a small bevel gear, and a control rod connected to the control valve. It operates:
a. Opposite phase (direction) steering under 35km/h (22mph)
1. Control Yoke is at an angle activated by the stepper motor
2. Front wheels are steered to the right. The small bevel gear is rotated in direction X by the rotation of the rear steering shaft. The small bevel gear, in turn, rotates the main bevel gear.
3. Rotation of the main bevel gear causes movement of the control rod toward the control valve.
4. Input rod of the control valve is pushed to the right, according to the degree of the control rod's movement (determined by the disposition of the swing arm), which is positioned to move in an upward direction, to the right. The rear wheels are thus steered to the left, in an opposite direction to the front wheels.
5. As the angle of the control yoke is increased in direction A as vehicle speed decreases, the rear-to-front steering ratio proportionately increases and the vehicle's steering lock tightens.
b. Same phase (direction) over 35km/h (22mph)
The operation of this phase is the reverse of the opposite phase one, because the control yoke is angled toward "positive" in this vehicle speed range, as illustrated. The phasing of the swing arm, yoke rod and bevel gear steers the rear wheels toward the right-the same direction as the front wheels.
c. Neutral phase, at 35km/h (22mph) The control yoke's angle is horizontal (neutral). Thus, the input rod is not affected, even if the control rod is moved with the rotation of the bevel gear unit. As a result, the rear wheels are not steered in this mode.
Power Cylinder
The movement of the input rod of the control valve unit is transmitted to the power cylinder's spool. The spool's displacement to the sleeve causes a pressure difference between the right and left side chambers in the hydraulic power cylinder. The pressure difference overcomes the output shaft load and initiates sleeve movement. The sleeve-power rod assembly is moved in the direction of the input rod by a proportionate degree. The output rod transmits steering action to the tie rod on either end of the rear wheel steering control-mechanism unit, thereby steering the rear wheels.
Fail-Safe Measures
The system automatically counteracts possible causes of failure, both electronic and hydraulic. In either case, the centering lock spring housed in the steering system unit returns the output rods in the "neutral" straightforward position, essentially alternating the entire steering system to a conventional 2WS principle.
Specifically, if a hydraulic defect should render a reduction in pressure level (by a movement malfunction or a broken driving belt), the rear wheel steering mechanism is automatically locked in a neutral position, activating a low-level warning light.
In the event of an electrical failure, such would be detected by a self-diagnostic circuit integrated within the 4WS control unit, which stimulates a solenoid valve and then neutralizes hydraulic pressure and return lines, thereby alternating the system again to that of a 2WS principle. Henceforth, the warning light referencing the 4WS system within the main instrument display is activated, indicating a system failure.
7
翻譯馬自達(dá)公司的速度感應(yīng)四輪轉(zhuǎn)向系統(tǒng)
三十五年前,兩個(gè)馬自達(dá)設(shè)計(jì)師提出了一個(gè)遠(yuǎn)見的、有計(jì)算認(rèn)為是相當(dāng)革命性的結(jié)論。他們在1962年10月26日日本汽車工程師學(xué)會(huì)技術(shù)會(huì)議上 Tadashi Okada博士和Toshiaki工程師總結(jié)了他們關(guān)于車輛動(dòng)力學(xué)的辛勤研究如下:
1.基本特性差別在于過度轉(zhuǎn)向與不足轉(zhuǎn)向的量和時(shí)間上的延遲和響應(yīng)。
2.汽車在高速狀態(tài)下應(yīng)具備不足轉(zhuǎn)向特點(diǎn)。
3.后方的穩(wěn)定很大程度上反映出車輪和輪胎。
4.控制與穩(wěn)定的一大進(jìn)步,可預(yù)期的方式自動(dòng)引導(dǎo)系統(tǒng)后車輪.
這種結(jié)論和提法被這兩個(gè)工程師提出并為良好懸架技術(shù)的研制成立了基金會(huì)多年來致力于研究和開發(fā),原有的理論有一定的作用,一些最重要的成就在近代歷史上汽車底盤工程,將在馬自達(dá)的系列產(chǎn)品的生產(chǎn). 這些發(fā)展包括雙斜后方的聯(lián)系中斷,首先采用原第一輪驅(qū)動(dòng)323K(1980)、馬自達(dá)626(1982),然后在更新完善馬自達(dá)626. 獲獎(jiǎng)的動(dòng)態(tài)跟蹤系統(tǒng)中斷的第二代發(fā)票RC7(1985); 并制定電子后方聯(lián)系中斷新馬自達(dá)929(1987).
而與此同時(shí)各種外部壓力和負(fù)荷作用與汽車后方的車輪,因?yàn)樗`背牛頓的運(yùn)動(dòng)學(xué)原理,這些新系統(tǒng)中斷將這些力量納入"4ws效應(yīng)",積極幫助穩(wěn)定車輛和機(jī)敏.
馬自達(dá)的設(shè)計(jì)師和工程師們的最終目標(biāo)仍是積極的方法產(chǎn)生積極的控制措施; 四輪轉(zhuǎn)向體系。
1983年馬自達(dá)將舉世震驚的概念引入工程車MX-02中,并在東京會(huì)展上亮相。這輛四門私家轎車在不尋常的長軸距上布置了寬敞的乘客空間,它匯聚許多先進(jìn)的特點(diǎn)具有高速穩(wěn)定和低速操控性能的真正意義的4WS系統(tǒng)。后方車輪的量取決于前方雙輪的角度和汽車的速度,而這些是由中央計(jì)算機(jī)單元控制的。
MX-02之后另一個(gè)令人振奮的概念車;MX-03于1985年9月第一次在法蘭克福展出。這輛豪華的四座雙門未來派轎車裝配了90年代精確電子控制的4WS系統(tǒng)和不同扭矩均分系統(tǒng),四輪驅(qū)動(dòng)和強(qiáng)勁的三旋輪發(fā)動(dòng)機(jī)。
馬自達(dá)電子控制四輪轉(zhuǎn)向系統(tǒng):
有利的技術(shù)
馬自達(dá)的電子控制、汽車速度感應(yīng)四輪轉(zhuǎn)向系統(tǒng)(4ws)驅(qū)動(dòng)雙后輪在一定方向和量上是最適合汽車的速度范圍的。
這種系統(tǒng)是機(jī)械和液壓系統(tǒng)驅(qū)動(dòng),伴隨著生產(chǎn)穩(wěn)定提高,并在某些參數(shù)上反應(yīng)敏捷。
馬自達(dá)4WS裝備車來自五個(gè)戰(zhàn)略利益的驅(qū)動(dòng),超過了傳統(tǒng)的底盤。
1.優(yōu)秀的轉(zhuǎn)彎穩(wěn)定性。
2.改良的駕駛響應(yīng)時(shí)間和精度控制。
3.高速直線穩(wěn)定性。
4.急速換道的機(jī)動(dòng)性大大改觀。
5.更小的轉(zhuǎn)彎半徑和低速范圍狹小空間的可操縱性。
馬自達(dá)最顯著的優(yōu)勢在于4WS系統(tǒng)能顯著降低高速疲勞駕駛和長期駕駛,這是最優(yōu)化后取得的。
1.降低對駕駛輸入和動(dòng)作的反應(yīng)延遲。
2.消除汽車對駕駛輸入的過度響應(yīng)。
從根本上說,在60 年代初兩位年輕的馬自達(dá)工程師通過提供這個(gè)最佳解決現(xiàn)象的方法,- 以這種方法他們提倡 -4WS系統(tǒng)已經(jīng)作為一項(xiàng)完全有利的技術(shù)出現(xiàn)。
戰(zhàn)略性建設(shè)
馬自達(dá)4WS系統(tǒng)由兩個(gè)串聯(lián)泵來提供主要的動(dòng)力來源的液壓輔助的前置式齒輪齒條副轉(zhuǎn)向系統(tǒng),該轉(zhuǎn)向系的總的傳動(dòng)比為14.2:1。后面的車輪的轉(zhuǎn)向依然是靠主泵提供動(dòng)力的液壓輔助驅(qū)動(dòng)和根據(jù)前輪轉(zhuǎn)角和汽車行駛速度來實(shí)現(xiàn)電子控制的裝置。后輪的轉(zhuǎn)向軸從前轉(zhuǎn)向器的轉(zhuǎn)向齒條延伸到轉(zhuǎn)向控制單元。
后面的轉(zhuǎn)向系統(tǒng)包括轉(zhuǎn)向軸后的輸入端,車輛速度傳感器,轉(zhuǎn)向控制單元(確定方向和角度),一個(gè)動(dòng)力氣缸和一個(gè)輸入軸。為了以防液壓故障轉(zhuǎn)向系統(tǒng)上面裝了一個(gè)中央鎖彈簧,它將系統(tǒng)鎖止在中間位置,另外一旦發(fā)生電類的故障作用在螺旋管閥液體壓力將消失(因此此時(shí)將中央鎖彈簧將被開啟)。依據(jù)車速的不同變化“4WS”系統(tǒng)因應(yīng)前輪的變化不斷改變后輪的狀態(tài)和比率。當(dāng)汽車在急轉(zhuǎn)彎時(shí)如果速度小于()將使汽車的后輪與前輪的狀態(tài)相反且在()使它們失效(直到筆直向前,按照傳統(tǒng)的兩輪轉(zhuǎn)向原理)。當(dāng)速度高于()時(shí)系統(tǒng)將于前輪保持同相轉(zhuǎn)動(dòng),因此增加了轉(zhuǎn)彎時(shí)的穩(wěn)定力。將轉(zhuǎn)向后車輪的最大轉(zhuǎn)角無論向左或是向右都增加了。馬自達(dá)已經(jīng)確定了使人感覺到自然和保持人類靈敏性的測量方法。
主要組成部分
1. 車輛速度傳感器解析速度計(jì)架子的旋轉(zhuǎn)并把這種信號(hào)傳遞到打字計(jì)算機(jī)單元。有兩個(gè)傳感器,一個(gè)在速度計(jì)內(nèi)部另一個(gè)在傳輸?shù)妮敵龆?,用這樣兩個(gè)傳感器是為了使它們兩個(gè)相互求證和失效保險(xiǎn)。
2. 轉(zhuǎn)向狀態(tài)控制單元*通過控制軛角度和錐形齒輪的配合運(yùn)動(dòng)將方向和行程傳遞給轉(zhuǎn)向后輪
3. 步進(jìn)電機(jī)執(zhí)行軛角度的改變和錐形齒輪定相。
4. 后輪驅(qū)動(dòng)軸通過控制那些小錐形齒輪來傳遞前輪轉(zhuǎn)向角,旋轉(zhuǎn)在組件里的主要錐形齒輪。
5. 控制閥將液壓傳遞給轉(zhuǎn)向執(zhí)行機(jī)構(gòu),根據(jù)狀態(tài)和行程要求引導(dǎo)合適的后輪轉(zhuǎn)向。
6. 液壓動(dòng)力氣缸以液壓驅(qū)動(dòng)輸出軸和后輪轉(zhuǎn)向,它用一個(gè)中央鎖止彈簧將后轉(zhuǎn)向輪鎖在中間位置,如果在不能確保其對一正常的2WS車輛起作用時(shí)該鎖將被開啟。
液壓泵,給前面兩個(gè)提供液壓和后驅(qū)動(dòng)輪。
轉(zhuǎn)向狀態(tài)控制的細(xì)節(jié)
轉(zhuǎn)向控制單元改變轉(zhuǎn)向后輪的度和方向。它有控制轉(zhuǎn)向后輪轉(zhuǎn)向系傳動(dòng)比的步進(jìn)電機(jī),一個(gè)控制軛, 一只擺動(dòng)臂,一個(gè)通過小錐齒輪連接在后輪轉(zhuǎn)向軸上的錐齒輪,和一個(gè)操縱桿連接控制閥。 它操作:
a. 轉(zhuǎn)向狀態(tài)(方向)少于()的轉(zhuǎn)向。
1. 控制軛在步進(jìn)電機(jī)作用下有一個(gè)角度。
2. 前輪被轉(zhuǎn)向右邊。小的錐形齒輪由于轉(zhuǎn)向后輪軸的旋轉(zhuǎn)而沿X方向旋轉(zhuǎn),小的錐形齒輪依次旋轉(zhuǎn)主要的錐形齒輪。
3. 主要錐形齒輪的旋轉(zhuǎn)引起控制閥操縱桿的運(yùn)動(dòng)。
4. 控制閥的輸入桿被推到右邊, 根據(jù)操縱桿的運(yùn)動(dòng)的度(通過擺動(dòng)臂的安排確定),被確定位置進(jìn)入一個(gè)向上方向,朝右邊。 后車輪在左側(cè)被如此使得轉(zhuǎn)向后輪對轉(zhuǎn)向前輪有個(gè)相反的轉(zhuǎn)向。
5. 隨著車輛速度的減少控制軛的角度增加,由后到前的轉(zhuǎn)向系傳動(dòng)比也要成比例增加而轉(zhuǎn)向鎖收緊。
b.這個(gè)階段的操縱與第一個(gè)階段的操作相反,這是因?yàn)樵谝欢ǖ乃俣确秶刂栖椀霓D(zhuǎn)動(dòng)角度趨向明顯,如同說明的那樣。擺動(dòng)臂,軛桿和錐形齒輪與前轉(zhuǎn)向輪保持相同的狀態(tài)。
c.中間狀態(tài),以()控制軛的角度是水平的(中間位置)。因此,這根輸入桿沒有被影響,即使這個(gè)操縱桿為錐形齒輪單元所帶動(dòng)。因此后轉(zhuǎn)向輪沒有被這種方式所驅(qū)動(dòng)。
動(dòng)力氣缸
控制閥單元的輸入軸的運(yùn)動(dòng)被傳遞給氣缸線軸。由于線軸相對與套管的位移使得液壓動(dòng)力氣缸的左右壁室的形成一個(gè)壓力差。壓力差克服輸出軸的負(fù)荷并使軸套運(yùn)動(dòng)。軸套動(dòng)力軸總成被以相同的比例傳遞到輸入。輸出軸將轉(zhuǎn)向運(yùn)動(dòng)傳遞到后輪的任一轉(zhuǎn)向控制單元。由此驅(qū)動(dòng)后轉(zhuǎn)向輪。
故障安全保障
系統(tǒng)能自動(dòng)消除電子和液壓可能存在的問題, 無論發(fā)生哪種情況,封裝在轉(zhuǎn)向系統(tǒng)里面的中央鎖止彈簧返回給輸出軸并確保其在中間的位置。本質(zhì)上是使整個(gè)轉(zhuǎn)向系統(tǒng)符合一個(gè)傳統(tǒng)的2WS準(zhǔn)則。尤其是一個(gè)液壓的缺陷使得壓力水平的降低(一個(gè)錯(cuò)誤的操作或者是安全帶的斷裂),后輪轉(zhuǎn)向裝置被鎖止在中間位置,并氣動(dòng)一盞低級(jí)的警告燈,如果是一個(gè)電子元件的錯(cuò)誤,那么這個(gè)錯(cuò)誤將被集成在4WS控制單元里面的自診斷回路所探測到,這將促使一個(gè)螺線管閥門的開啟然后使液壓無效并且返回到回路里面,因此再次使該系統(tǒng)符合2WS準(zhǔn)則。 從今以后,4WS系統(tǒng)在主要儀器內(nèi)展示的警告燈開動(dòng),就表明一個(gè)系統(tǒng)故障。
11
收藏