新編高考數(shù)學理一輪資源庫 第2章學案5

上傳人:沈*** 文檔編號:62134006 上傳時間:2022-03-14 格式:DOC 頁數(shù):9 大?。?26KB
收藏 版權申訴 舉報 下載
新編高考數(shù)學理一輪資源庫 第2章學案5_第1頁
第1頁 / 共9頁
新編高考數(shù)學理一輪資源庫 第2章學案5_第2頁
第2頁 / 共9頁
新編高考數(shù)學理一輪資源庫 第2章學案5_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學理一輪資源庫 第2章學案5》由會員分享,可在線閱讀,更多相關《新編高考數(shù)學理一輪資源庫 第2章學案5(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、新編高考數(shù)學復習資料 學案5 函數(shù)的單調性與最值 導學目標: 1.理解函數(shù)的單調性、最大值、最小值及其幾何意義.2.會用定義判斷函數(shù)的單調性,會求函數(shù)的單調區(qū)間及會用單調性求函數(shù)的最值. 自主梳理 1.單調性 (1)定義:一般地,設函數(shù)y=f(x)的定義域為A,如果對于區(qū)間I內的任意兩個值x1,x2,當x1f(x2)),那么就說f(x)在區(qū)間I上是單調________________. (2)單調性的定義的等價形式:設x1,x2∈[a,b],那么(x1-x2)(f(x1)-f(x2))>0?>0?f(x)在[a,b]上是單調__

2、______;(x1-x2)(f(x1)-f(x2))<0?<0?f(x)在[a,b]上是單調________. (3)單調區(qū)間:如果函數(shù)y=f(x)在某個區(qū)間上是單調增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在區(qū)間I上具有單調性,單調增區(qū)間和單調減區(qū)間統(tǒng)稱為__________. (4)函數(shù)y=x+(a>0)在 (-∞,-),(,+∞)上單調________;在(-,0),(0,)上單調________;函數(shù)y=x+(a<0)在____________上單調遞增. 2.最值 一般地,設函數(shù)y=f(x)的定義域為A,如果存在x0∈A,使得對于任意的x∈A,都有f(x)≤f(x0)(或≥f(

3、x0)),則稱f(x0)為y=f(x)的最____(或最____)值. 自我檢測 1.若函數(shù)y=ax與y=-在(0,+∞)上都是減函數(shù),則y=ax2+bx在(0,+∞)上是________________.(用“單調減函數(shù)”、“單調增函數(shù)”、“不單調”填空) 2.(2011·連云港模擬)設f(x)是(-∞,+∞)上的增函數(shù),a為實數(shù),則有f(a2+1)________f(a).(填“>”、“<”或“=”) 3.下列函數(shù)在(0,1)上是增函數(shù)的是________(填序號). ①y=1-2x;②y=;③y=-x2+2x;④y=5. 4.若f(x)=x2+2(a-1)x+4是區(qū)間(-∞,

4、4]上的減函數(shù),則實數(shù)a的取值范圍是________. 5.當x∈[0,5]時,函數(shù)f(x)=3x2-4x+c的值域為______________________. 探究點一 函數(shù)單調性的判定及證明 例1 設函數(shù)f(x)=(a>b>0),求f(x)的單調區(qū)間,并說明f(x)在其單調區(qū)間上的單調性. 變式遷移1 已知f(x)是定義在R上的增函數(shù),對x∈R有f(x)>0,且f(5)=1,設F(x)=f(x)+,討論F(x)的單調性,并證明你的結論. 探究點二 函數(shù)的單調性與最值 例2 已知函數(shù)f(x)=,x∈[1,+∞). (1)當a=時,求函數(shù)f(x

5、)的最小值; (2)若對任意x∈[1,+∞),f(x)>0恒成立,試求實數(shù)a的取值范圍. 變式遷移2 已知函數(shù)f(x)=x-+在(1,+∞)上是增函數(shù),求實數(shù)a的取值范圍. 探究點三 抽象函數(shù)的單調性 例3 已知函數(shù)f(x)對于任意x,y∈R,總有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,f(1)=-. (1)求證:f(x)在R上是減函數(shù); (2)求f(x)在[-3,3]上的最大值和最小值. 變式遷移3 已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f()=f(x1)-f(x2),且當x>1時,f(x)<0.

6、(1)求f(1)的值; (2)判斷f(x)的單調性; (3)若f(3)=-1,解不等式f(|x|)<-2. 分類討論及數(shù)形結合思想 例 (14分)求f(x)=x2-2ax-1在區(qū)間[0,2]上的最大值和最小值. 【答題模板】 解 f(x)=(x-a)2-1-a2,對稱軸為x=a.[2分] (1)當a<0時,由圖①可知,f(x)min=f(0)=-1,f(x)max=f(2)=3-4a.[5分] (2)當0≤a<1時,由圖②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.[8分] (3)當1

7、min=f(a)=-1-a2,f(x)max=f(0)=-1.[11分] (4)當a>2時,由圖④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)=-1. 綜上,(1)當a<0時,f(x)min=-1,f(x)max=3-4a; (2)當0≤a<1時,f(x)min=-1-a2,f(x)max=3-4a; (3)當12時,f(x)min=3-4a,f(x)max=-1.[14分] 【突破思維障礙】 (1)二次函數(shù)的單調區(qū)間是由圖象的對稱軸確定的.故只需確定對稱軸與區(qū)間的關系.由于對稱

8、軸是x=a,而a的取值不定,從而導致了分類討論. (2)不是應該分a<0,0≤a≤2,a>2三種情況討論嗎?為什么成了四種情況?這是由于拋物線的對稱軸在區(qū)間[0,2]所對應的區(qū)域時,最小值是在頂點處取得,但最大值卻有可能是f(0),也有可能是f(2). 函數(shù)的單調性的判定與單調區(qū)間的確定常用方法有: (1)定義法;(2)導數(shù)法;(3)圖象法;(4)單調性的運算性質. 總結如下:若函數(shù)f(x),g(x)在區(qū)間I上具有單調性,則在區(qū)間I上具有以下性質: (1)f(x)與f(x)+C具有相同的單調性. (2)f(x)與af(x),當a>0時,具有相同的單調性,當a<0時,具有相反的單

9、調性. (3)當f(x)恒不等于零時,f(x)與具有相反的單調性. (4)當f(x),g(x)都是增(減)函數(shù)時,則f(x)+g(x)是增(減)函數(shù). (5)當f(x),g(x)都是增(減)函數(shù)時,則f(x)·g(x)當兩者都恒大于零時,是增(減)函數(shù);當兩者都恒小于零時,是減(增)函數(shù). (滿分:90分) 一、填空題(每小題6分,共48分) 1.(2010·泰州模擬)“a=1”是“函數(shù)f(x)=x2-2ax+3在區(qū)間[1,+∞)上為增函數(shù)”的____________條件. 2.(2009·天津改編)已知函數(shù)f(x)=若f(2-a2)>f(a),則實數(shù)a的取值范圍為_____

10、___. 3.(2009·寧夏,海南改編)用min{a,b,c}表示a,b,c三個數(shù)中的最小值.設f(x)=min{2x,x+2,10-x}(x≥0),則f(x)的最大值為________. 4.若f(x)=-x2+2ax與g(x)=在區(qū)間[1,2]上都是減函數(shù),則a的取值范圍為________. 5.已知定義在R上的增函數(shù)f(x),滿足f(-x)+f(x)=0,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,則f(x1)+f(x2)+f(x3)的符號為________(填“正”、“負”、“不確定”). 6.(2011·淮安調研)函數(shù)y=-(x-3)|x|的遞增

11、區(qū)間是________. 7.設f(x)是增函數(shù),則下列結論一定正確的是________(填序號). ①y=[f(x)]2是增函數(shù); ②y=是減函數(shù); ③y=-f(x)是減函數(shù); ④y=|f(x)|是增函數(shù). 8.(2011·蘇州質檢)設0

12、0恒成立,求a的取值范圍. 11.(14分)已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時,有>0成立. (1)判斷f(x)在[-1,1]上的單調性,并證明; (2)解不等式:f(x+) 3.③ 4.a(chǎn)≤-3 5.[-+

13、c,55+c] 課堂活動區(qū) 例1 解題導引 對于給出具體解析式的函數(shù),判斷或證明其在某區(qū)間上的單調性問題,可以結合定義(基本步驟為:取點,作差或作商,變形,判斷)來求解.可導函數(shù)則可以利用導數(shù)求解.有些函數(shù)可以轉化為兩個或多個基本初等函數(shù),利用其單調性可以方便求解. 解 在定義域內任取x1,x2,且使x10, Δy=f(x2)-f(x1)=- = =. ∵a>b>0,∴b-a<0,∴(b-a)(x2-x1)<0, 又∵x∈(-∞,-b)∪(-b,+∞), ∴只有當x1

14、f(x1),F(xiàn)(x2)-F(x1)=[f(x2)+]-[f(x1)+]=[f(x2)-f(x1)][1-], ∵f(x)是R上的增函數(shù),且f(5)=1, ∴當x<5時,05時f(x)>1; ①若x1x1>5,則f(x2)>

15、f(x1)>1, ∴f(x1)·f(x2)>1,∴1->0, ∴F(x2)>F(x1). 綜上,F(xiàn)(x)在(-∞,5)上為減函數(shù),在(5,+∞)上為增函數(shù). 例2 解 (1)當a=時,f(x)=x++2, 設x1,x2∈[1,+∞)且x10, ∴f(x1)-f(x2)<0,∴f(x1)

16、=>0恒成立,等價于x2+2x+a>0恒成立. 設y=x2+2x+a,x∈[1,+∞), y=x2+2x+a=(x+1)2+a-1遞增, ∴當x=1時,ymin=3+a, 于是當且僅當ymin=3+a>0時,函數(shù)f(x)恒成立, 故a>-3. 方法二 f(x)=x++2,x∈[1,+∞), 當a≥0時,函數(shù)f(x)的值恒為正,滿足題意,當a<0時,函數(shù)f(x)遞增; 當x=1時,f(x)min=3+a,于是當且僅當f(x)min=3+a>0時,函數(shù)f(x)>0恒成立,故a>-3. 方法三 在區(qū)間[1,+∞)上f(x)=>0恒成立等價于x2+2x+a>0恒成立. 即a>-x2

17、-2x恒成立. 又∵x∈[1,+∞),a>-x2-2x恒成立, ∴a應大于函數(shù)u=-x2-2x,x∈[1,+∞)的最大值. ∴a>-x2-2x=-(x+1)2+1. 當x=1時,u取得最大值-3,∴a>-3. 變式遷移2 解 設10,即a>-x1x2恒成立. ∵11,-x1x2<-1. ∴a≥-1,∴a的取值范圍是[-1,+∞). 例3 解題導引 (1)對于抽象函數(shù)的問題要根據(jù)題設

18、及所求的結論來適當取特殊值說明抽象函數(shù)的特點.證明f(x)為單調減函數(shù),首選方法是用單調性的定義來證.(2)用函數(shù)的單調性求最值. 解 (1)方法一 ∵函數(shù)f(x)對于任意x,y∈R總有f(x)+f(y)=f(x+y), ∴令x=y(tǒng)=0,得f(0)=0. 再令y=-x,得f(-x)=-f(x). 在R上任取x1>x2,則x1-x2>0, f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2). 又∵x>0時,f(x)<0,而x1-x2>0, ∴f(x1-x2)<0,即f(x1)x2,則f(x1)-f(x

19、2) =f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-f(x2) =f(x1-x2). 又∵x>0時,f(x)<0.而x1-x2>0,∴f(x1-x2)<0, 即f(x1)

20、遷移3 解 (1)令x1=x2>0, 代入得f(1)=f(x1)-f(x1)=0,故f(1)=0. (2)任取x1,x2∈(0,+∞),且x1>x2,則>1, 由于當x>1時,f(x)<0, ∴f()<0,即f(x1)-f(x2)<0,∴f(x1)0時,由f(|x|)<-2,得f(x)9; 當x<0時,由f(|x|)<-2,得

21、f(-x)9,故x<-9, ∴不等式的解集為{x|x>9或x<-9}. 課后練習區(qū) 1.充分不必要 解析 f(x)對稱軸x=a,當a≤1時f(x)在[1,+∞)上單調遞增.∴“a=1”為f(x)在[1,+∞)上遞增的充分不必要條件. 2.(-2,1) 解析 由題知f(x)在R上是增函數(shù),由題得2-a2>a,解得-2

22、 解析 f(x)在[a,+∞)上是減函數(shù),對于g(x),只有當a>0時,它有兩個減區(qū)間為(-∞,-1)和(-1,+∞),故只需區(qū)間[1,2]是f(x)和g(x)的減區(qū)間的子集即可,則a的取值范圍是00,x2+x3>0,x3+x1>0, ∴x1>-x2,x2>-x3,x3>-x1. 又∵f(x1)>f(-x2)=-f(x2), f(x2)>f(-x3)=-f(x3), f(x3)>f(-x1)=-f(x1), ∴f(x1)+f(x2)+f(x3)>-f(x2)-f(x3)-f(x1)

23、. ∴f(x1)+f(x2)+f(x3)>0. 6.[0,] 解析 y=. 畫圖象如圖所示: 可知遞增區(qū)間為[0,]. 7.③ 解析 舉例:設f(x)=x,易知①②④均不正確. 8.4 解析 y=+=,當00,x2-x1>0. f(x1)-f(x2)=(a-)-(a-) =-=<0.………………………………………………………………………(5分) ∴f(x1)

24、………………………………(6分) (2)解 由題意a-<2x在(1,+∞)上恒成立, 設h(x)=2x+,則a0,x∈(1,+∞), ∴h(x)在(1,+∞)上單調遞增.………………………………………………………(12分) 故a≤h(1),即a≤3. ∴a的取值范圍為(-∞,3].…………………………………………………………(14分) 10.解 設f(x)的最小值為g(a),則只需g(a)≥0, 由題意知,f(x)的對稱軸為-. (1)當-<-2,即a>4時

25、, g(a)=f(-2)=7-3a≥0,得a≤. 又a>4,故此時的a不存在.…………………………………………………………(4分) (2)當-∈[-2,2],即-4≤a≤4時, g(a)=f(-)=3-a-≥0得-6≤a≤2. 又-4≤a≤4,故-4≤a≤2.……………………………………………………………(8分) (3)當->2,即a<-4時, g(a)=f(2)=7+a≥0得a≥-7. 又a<-4,故-7≤a<-4.………………………………………………………………(13分) 綜上得所求a的取值范圍是-7≤a≤2.………………………………………………(14分) 11.解 (

26、1)任取x1,x2∈[-1,1],且x10,x1-x2<0, ∴f(x1)-f(x2)<0,即f(x1)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!