《《平均數(shù)二》導(dǎo)學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《《平均數(shù)二》導(dǎo)學(xué)案(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、1.平均數(shù)(第2課時)
【學(xué)習(xí)目標(biāo)】
1 .進一步理解加權(quán)平均數(shù)的含義,會求實際情境中的加權(quán)平均數(shù)。
2 .體會算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系和區(qū)別,并能利用它們解決一些現(xiàn)實問 題。
【學(xué)習(xí)過程】
活動L感受權(quán)對平均數(shù)的影響
1.某學(xué)校進行廣播操比
服裝統(tǒng)一
進退場有序
動作規(guī)范
動作整齊
賽,比賽打分包括以下四項:
一班
9
8
9
8
服裝統(tǒng)一、進退場有序、動作
二班
10
9
7
8
規(guī)范、動作整齊(每項滿分10
三班
8
9
8
9
分)。其中二個班級的成績分別
如右表。
(1)各班四項成績的算術(shù)平
2、均數(shù)分別是多少?
(2)若將服裝統(tǒng)一、進退場有序、動作規(guī)范、動作整齊這四項得分依次按10%、
20%、30%、40%的比例計算各班的廣播操比賽成績,那么哪個班的成績最高?
(3)你認(rèn)為上述四項中,哪一項更為重要?按自己的想法設(shè)計一個評分方案,并
確定哪一個班的廣播操比賽成績最高,與同伴進行交流。
交流?反思
2. (1)算術(shù)平均數(shù)與加權(quán)平均數(shù),有什么區(qū)別與聯(lián)系。
學(xué)習(xí)鏈接1
(2)計算加權(quán)平均數(shù)時,分母是怎樣確定的?
3 ,加權(quán)平均數(shù)中“權(quán)”的差異對平均數(shù)有怎樣的影響?
運用?鞏固
4.某公司欲招收職員一名,從學(xué)歷、經(jīng) 驗和工作態(tài)度等三個方面對甲乙丙三名 應(yīng)聘者進行了
3、初步測試,測試成績?nèi)缬?表。
(1)如果將學(xué)歷、經(jīng)驗和工作態(tài)度三項 得分按1:2:2的比例確定各人的最終得 分,并以此為依據(jù)確定錄用者,那么誰將被錄用?
(2)自己確定學(xué)歷、經(jīng)驗和工作態(tài)度三項的權(quán),并根據(jù)自己的方案確定錄用者。
活動2:權(quán)的觀點認(rèn)識生活中的平均數(shù)
1 .小明騎自行車的速度是15千米/時,步行的速度是5千米/時。
(1)如果小明先騎自行車1小時,然后乂步行了 1小時,那么他的平均速度是 多少?
(2)如果小明先騎自行車2小時,然后步行了 3小時,那么他的平均速度是多 少?
交流?反思
2 .你能從權(quán)的角度理解平均速度嗎?
學(xué)習(xí)鏈接2
*3.生活中很多平均數(shù),都
4、可以用權(quán)的觀點理解。試舉出生活中的一些平均數(shù), 從權(quán)的角度加以解釋,并與同伴交流。
活動3:自主反饋
1.某瓜農(nóng)采用大棚栽培技術(shù)種 植了一畝地的良種西瓜,這畝地 產(chǎn)西瓜約600個,在西瓜上市前
西瓜質(zhì)量(總位: kg)
5. 5
5. 4
5. 0
4. 9
4. 6
4. 3
西瓜數(shù)量(單位:
個)
1
2
3
2
1
1
該瓜農(nóng)隨機摘下了 10個成熟的西瓜,它們的質(zhì)量如右表,計算這10個西瓜的平
均質(zhì)量。
所用時間/分
人數(shù)
0
5、0
6、表所示:
表1答辯情況得分表
表2 民主測評票數(shù)統(tǒng)計表
A
B
C
D
E
“好嗦數(shù)
“較好”票數(shù)
“一鏟票數(shù)
甲
90
92
94
95
88
甲
40
7
3
乙
89
86
87
94
91
乙
42
4
4
規(guī)定:
演講答辯得分按“去掉一個最高分和一個最低分再算平均分”的方法確定; 民主測評得分=“好”票數(shù)x2分+“較好”票數(shù)xl分+“一般”票數(shù)x0分; 綜合得分二演講答辯得分X (1—4)+民主測評得分X4 (其中0.5&E0.8).
(1)當(dāng)4 = 0.6時,甲的綜合得分是多少?
(2)〃在什么范圍時?
7、,甲的綜合得分高?。在什么范圍時.,乙的綜合得分高?
【學(xué)習(xí)鏈接】
1 .算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況(各項的權(quán)相等的情況)。
當(dāng)實際問題中,各項的權(quán)(重要程度)不相等時,采用加權(quán)平均數(shù);當(dāng)各項的權(quán) 相等時,采用算術(shù)平均數(shù)。
2 .騎自行車、步行各1小時,兩個速度的“重要程度”相同,因此,直接求平均數(shù) 即可;騎自行車2小時,步行3小時,騎車速度和步行速度的“重要程度”就不同 了。
自主反饋參考答案
1 .每個平均5千克,
2 . (5x4+15x6+25x14+35x13+45x9+55x4) ( (4+6+14+13+9+4) =30.8
答案:30.8
3 .解:
8、(1)中的演講得分=9。+孑+ 94 =92 (分),
甲的民主測評得分=40x2+7x1 +3x0=87 (分),
當(dāng)a = 0.6時,甲的綜合得分=92x (1-0,6) 4-87x0.6=89 (分).
(2) ?:乙的演講得分=竺±誓21 =89 (分),
乙的民主測評得分=42x2+4x1 +4x0=88 (分)
???甲的綜合得分=92(1 - a) + 87。,
乙的綜合得分=89(1 - a) + 8M .
當(dāng) 92(1 -a) + 87a > 89(1 -。) + 88n 時,"< ± ,
4
當(dāng) 92(1-4) + 87〃 <89(1 — a)+ 8曲時,,
4
乂: 0.5<6/<0.8
???當(dāng)0.5-V0.75時,甲的綜合得分高;當(dāng)0.75 30.8時,乙的綜合得
分高.