11、m<0,則f(x)在[1,3]上單調(diào)遞減,
要使f(x)<0對(duì)x∈[1,3]恒成立,
只需f(1)<0即m<6,
所以m<0.
綜上可知m的取值范圍是.
線性規(guī)劃問(wèn)題
已知變量x,y滿足約束條件且有無(wú)窮多個(gè)點(diǎn)(x,y)使目標(biāo)函數(shù)z=x+my取得最小值,則m=________.
【導(dǎo)學(xué)號(hào):91432363】
思路探究:先畫(huà)出可行域,再研究目標(biāo)函數(shù),由于目標(biāo)函數(shù)中含有參數(shù)m,故需討論m的值,再結(jié)合可行域,數(shù)形結(jié)合確定滿足題意的m的值.
1 [作出線性約束條件表示的平面區(qū)域,如圖中陰影部分所示.
若m=0,則z=x,目標(biāo)函數(shù)z=x+my取得最小值的最優(yōu)解只有一個(gè),不
12、符合題意.
若m≠0,目標(biāo)函數(shù)z=x+my可看作動(dòng)直線y=-x+,
若m<0,則->0,數(shù)形結(jié)合知使目標(biāo)函數(shù)z=x+my取得最小值的最優(yōu)解不可能有無(wú)窮多個(gè);
若m>0,則-<0,數(shù)形結(jié)合可知,當(dāng)動(dòng)直線與直線AB重合時(shí),有無(wú)窮多個(gè)點(diǎn)(x,y)在線段AB上,使目標(biāo)函數(shù)z=x+my取得最小值,即-=-1,則m=1.
綜上可知,m=1.]
[規(guī)律方法]
1.線性規(guī)劃在實(shí)際中的類型主要有:
(1)給定一定數(shù)量的人力、物力資源,如何運(yùn)用這些資源,使完成任務(wù)量最大,收到的效益最高;
(2)給定一項(xiàng)任務(wù),怎樣統(tǒng)籌安排,使得完成這項(xiàng)任務(wù)耗費(fèi)的人力、物力資源最少.
2.解答線性規(guī)劃應(yīng)用題的步驟
13、:
(1)列:設(shè)出未知數(shù),列出約束條件,確定目標(biāo)函數(shù).
(2)畫(huà):畫(huà)出線性約束條件所表示的可行域.
(3)移:在線性目標(biāo)函數(shù)所表示的一組平行線中,利用平移的方法找出與可行域有公共點(diǎn)且縱截距最大或最小的直線.
(4)求:通過(guò)解方程組求出最優(yōu)解.
(5)答:作出答案.
[跟蹤訓(xùn)練]
2.制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目,根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%和50%,可能的最大虧損率分別為30%和10%,投資人計(jì)劃投資金額不超過(guò)10萬(wàn)元,要求確??赡艿馁Y金虧損不超過(guò)1.8萬(wàn)元,問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資
14、多少萬(wàn)元,才能使可能的盈利最大?
[解] 設(shè)投資人分別用x萬(wàn)元、y萬(wàn)元投資甲、乙兩個(gè)項(xiàng)目.
由題意,知
目標(biāo)函數(shù)z=x+0.5y.
畫(huà)出可行域如圖中陰影部分.
作直線l0:x+0.5y=0,并作平行于l0的一組直線x+0.5y=z,z∈R,與可行域相交,其中有一條直線經(jīng)過(guò)可行域上的點(diǎn)M時(shí),z取得最大值.
由得
即M(4,6).
此時(shí)z=4+0.5×6=7(萬(wàn)元).
∴當(dāng)x=4,y=6時(shí),z取得最大值,即投資人用4萬(wàn)元投資甲項(xiàng)目,6萬(wàn)元投資乙項(xiàng)目,才能在確保虧損不超過(guò)1.8萬(wàn)元的前提下,使可能的盈利最大.
利用基本不等式求最值
設(shè)函數(shù)f(x)=x+,x∈[0,+∞).
15、
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的最小值;
(2)當(dāng)00,>0,
∴x+1+≥2,當(dāng)且僅當(dāng)x+1=,
即x=-1時(shí),f(x)取等號(hào),此時(shí)f(x)min=2-1.
(2)當(dāng)0
16、號(hào)取不到.
f(x)在[0,+∞)上單調(diào)遞增.
∴f(x)min=f(0)=a.
[規(guī)律方法] 基本不等式是證明不等式、求某些函數(shù)的最大值及最小值
的理論依據(jù),在解決數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題中應(yīng)用廣泛.
(1)基本不等式通常用來(lái)求最值,一般用a+b≥解
“定積求和,和最小”問(wèn)題,用ab≤解“定和求積,積最大”問(wèn)題.
(2)在實(shí)際運(yùn)用中,經(jīng)常涉及函數(shù)f(x)=x+,一定要注意
適用的范圍和條件:“一正、二定、三相等”.特別是利用拆項(xiàng)、添項(xiàng)、
配湊、分離變量、減少變?cè)龋瑯?gòu)造定值條件的方法和對(duì)等號(hào)能否成立
的驗(yàn)證.
[跟蹤訓(xùn)練]
3.某種商品原來(lái)每件售價(jià)為25元,年銷售8萬(wàn)件.
17、
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2 000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了擴(kuò)大該商品的影響力,提高年銷售量.公司決定明年對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷策略改革,并提高定價(jià)到x元,公司擬投入(x2-600)萬(wàn)元作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入x萬(wàn)元作為浮動(dòng)宣傳費(fèi)用.試問(wèn):當(dāng)該商品明年的銷售量a至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時(shí)每件商品的定價(jià).
[解] (1)設(shè)每件定價(jià)為t元,依題意,有[8-(t-25)×0.2]t≥25×8,
整理得t2-65t+1 000≤0,
解得25≤t≤40.
因此要使銷售的總收入不低于原收入,每件定價(jià)最多為40元.
(2)依題意,x>25時(shí),不等式ax≥25×8+50+(x2-600)+x有解,等價(jià)于x>25時(shí),a≥+x+有解.
∵+x≥2=10(當(dāng)且僅當(dāng)x=30時(shí),等號(hào)成立),
∴a≥10.2.
因此當(dāng)該商品明年的銷售量a至少應(yīng)達(dá)到10.2萬(wàn)件時(shí),才可能使明年的銷售收入不低于原收入與總投入之和,此時(shí)該商品的定價(jià)為每件30元.
- 9 -