《2018年高考數(shù)學 專題11 空間中的平行與垂直教學案 文》由會員分享,可在線閱讀,更多相關《2018年高考數(shù)學 專題11 空間中的平行與垂直教學案 文(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
專題11 空間中的平行與垂直
【2018年高考考綱解讀】
高考對本內容的考查主要有:
(1)主要考查空間概念,空間想象能力,點線面位置關系判斷,表面積與體積計算等,A級要求
(2)主要考查線線、線面、面面平行與垂直的證明,B級要求
【重點、難點剖析】
1.直線、平面平行的判定及其性質
(1)線面平行的判定定理:a?α,b?α,a∥b?a∥α.
(2)線面平行的性質定理:a∥α,a?β,α∩β=b?a∥b.
(3)面面平行的判定定理:a?β,b?β,a∩b=P,a∥α,b∥α?α∥β.
(4)面面平行的性質定理:α∥β,α∩γ=a,β∩γ=b?a∥b.
2.平行關系的
2、轉化
兩平面平行問題常常可以轉化為直線與平面的平行,而直線與平面平行又可轉化為直線與直線平行,所以要注意轉化思想的應用,以下為三種平行關系的轉化示意圖.
3.直線、平面垂直的判定及其性質
(1)線面垂直的判定定理:m?α,n?α,m∩n=P,l⊥m,l⊥n?l⊥α.
(2)線面垂直的性質定理:a⊥α,b⊥α?a∥b.
(3)面面垂直的判定定理:a?β,a⊥α?α⊥β.
(4)面面垂直的性質定理:α⊥β,α∩β=l,a?α,a⊥l?a⊥β.
4.垂直關系的轉化
與平行關系之間的轉化類似,它們之間的轉化如下示意圖.
在垂直的相關定理中,要特別注意記憶面面垂直的性質定理:兩
3、個平面垂直,在一個平面內垂直于它們交線的直線必垂直于另一個平面,當題目中有面面垂直的條件時,一般都要用此定理進行轉化.
【題型示例】
題型一 空間幾何體的結構及其三視圖
例1. 【2017課標II,文6】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分后所得,則該幾何體的體積為
A. B. C. D.
【答案】B
【變式探究】(2015·北京,7)某四棱錐的三視圖如圖所示,該四棱錐最長棱的棱長為( )
A.1 B. C. D.2
4、解析 四棱錐的直觀圖如圖所示,PC⊥平面ABCD,PC=1,底面四邊形ABCD為正方形且邊長為1,最長棱長PA==.
答案 C
【變式探究】(2015·重慶,5)某幾何體的三視圖如圖所示,則該幾何體的體積為( )
A.+2π B. C. D.
解析 該幾何體由一個圓柱和一個從軸截面截開的“半圓錐”組成,其體積為V=π×12×2+×π×12×1=2π+=.
答案 B
題型二 空間幾何體的表面積
例2. 【2017課標1,文16】已知三棱錐S-ABC的所有頂點都在球O的球面上,SC是球O的直徑.若平面SCA⊥平面SC
5、B,SA=AC,SB=BC,三棱錐S-ABC的體積為9,則球O的表面積為________.
【答案】
【變式探究】(2015·新課標全國Ⅰ,11)圓柱被一個平面截去一部分后與半球(半徑為r)組成一個幾何體,該幾何體三視圖中的正視圖和俯視圖如圖所示.若該幾何體的表面積為16+20π,則r=( )
A.1 B.2
C.4 D.8
解析 由題意知,2r·2r+·2πr·2r+πr2+πr2+·4πr2=4r2+5πr2=16+20π,∴r=2.
答案 B
【變式探究】(2015·新課標全國Ⅱ,10)已知A,B是球O的球
6、面上兩點,∠AOB=90°,C為該球面上的動點.若三棱錐OABC體積的最大值為36,則球O的表面積為( )
A.36π B.64π C.144π D.256π
答案 C
3.(2015·安徽,9)一個四面體的三視圖如圖所示,則該四面體的表面積是( )
A.1+ B.1+2 C.2+ D.2
解析 由幾何體的三視圖可知空間幾何體的直觀圖如圖所示.
∴其表面積S表=2××2×1+2××()2=2+,故選C.
答案 C
題型三 幾何體的體積
例3. 【201
7、7山東,文13】由一個長方體和兩個圓柱構成的幾何體的三視圖如圖,則該幾何體的體積為 .
【答案】
【變式探究】【2017江蘇,6】 如圖,在圓柱內有一個球,該球與圓柱的上、下面及母線均相切.記圓柱的體積為,球的體積為,則的值是 ▲ .
O
O1
O2
(第6題)
【答案】
【解析】設球半徑為,則.故答案為.
【變式探究】(2016·全國卷Ⅲ)如圖,四棱錐PABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(1)證明:MN∥平面PAB
8、;
(2)求四面體N-BCM的體積.
如圖,取BC的中點E,連接AE.
由AB=AC=3
得AE⊥BC,AE==.
由AM∥BC得M到BC的距離為,
故S△BCM=×4×=2.
所以四面體NBCM的體積
VNBCM=·S△BCM·=.
【變式探究】(2015·新課標全國Ⅰ,6)《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中有如下問題:“今有委米依垣內角,下周八尺,高五尺,問:積及為米幾何?”其意思為:“在屋內墻角處堆放米(如圖,米堆為一個圓錐的四分之一),米堆底部的弧長為8尺,米堆的高為5尺,問米堆的體積和堆放的米各為多少?”已知1斛米的體積約為1.62立方尺,圓
9、周率約為3,估算出堆放的米約有( )
A.14斛 B.22斛 C.36斛 D.66斛
答案 B
【變式探究】(2015·山東,9)已知等腰直角三角形的直角邊的長為2,將該三角形繞其斜邊所在的直線旋轉一周而形成的曲面所圍成的幾何體的體積為( )
A. B.
C.2π D.4π
解析 如圖,設等腰直角三角形為△ABC,∠C=90°,AC=CB=2,則AB=2.
設D為AB中點,則BD=AD=CD=.
∴所圍成的幾何體為兩個圓錐的組合體,其體積V=2××π×
10、()2×=.
答案 B
【變式探究】(2015·新課標全國Ⅱ,19)如圖,長方體ABCD-A1B1C1D1中AB=16,BC=10,AA1=8,點E,F(xiàn)分別在A1B1,D1C1上,A1E=D1F=4.過點E,F(xiàn)的平面α與此長方體的面相交,交線圍成一個正方形.
(1)在圖中畫出這個正方形(不必說明畫法和理由);
(2)求平面α把該長方體分成的兩部分體積的比值.
題型四 空間中的平行與垂直
例4、(2017·全國卷Ⅱ)如圖,四棱錐P-ABCD中,側面PAD為等邊三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.
(1)證明:直線BC∥平面PAD
11、;
(2)若△PCD的面積為2,求四棱錐P-ABCD的體積.
(1)證明:在底面ABCD中,∠BAD=∠ABC=90°.
所以BC∥AD,(1分)
【舉一反三】【2017山東,文18】(本小題滿分12分)由四棱柱ABCD-A1B1C1D1截去三棱錐C1- B1CD1后得到的幾何體如圖所示,四邊形ABCD為正方形,O為AC與BD 的交點,E為AD的中點,A1E平面ABCD,
(Ⅰ)證明:∥平面B1CD1;
(Ⅱ)設M是OD的中點,證明:平面A1EM平面B1CD1.
【答案】①證明見解析.②證明見解析.
【解析】 證明:
(2)因為 ,E,M分別為AD和OD的中點,
12、
所以,
又 面,
所以
因為
所以
又 A1E, EM
所以平面平面,
所以 平面平面
【變式探究】(2016·北京卷)如圖,在四棱錐P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(導學號 55410121)
(1)求證:DC⊥平面PAC;
(2)求證:平面PAB⊥平面PAC;
(3)設點E為AB的中點,在棱PB上是否存在點F,使得PA∥平面CEF?說明理由.
【變式探究】(2015·湖南,18)如圖,直三棱柱ABCA1B1C1的底面是邊長為2的正三角形,E,F(xiàn)分別是BC,CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1;
(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐FAEC的體積.
(1)證明
∵△ABC為正三角形,E為BC中點,
∴AE⊥BC,
∴又B1B⊥平面ABC,AE?平面ABC,
12