《2022年春八年級(jí)數(shù)學(xué)下冊(cè) 第18章 勾股定理章末小結(jié)與提升課時(shí)作業(yè) (新版)滬科版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年春八年級(jí)數(shù)學(xué)下冊(cè) 第18章 勾股定理章末小結(jié)與提升課時(shí)作業(yè) (新版)滬科版(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年春八年級(jí)數(shù)學(xué)下冊(cè) 第18章 勾股定理章末小結(jié)與提升課時(shí)作業(yè) (新版)滬科版
勾股定理
類(lèi)型1 利用勾股定理求線段的長(zhǎng)
典例1 如圖,Rt△ABC中,AB=9,BC=6,∠B=90°,將△ABC折疊,使A點(diǎn)與BC邊上的中點(diǎn)D重合,折痕為MN,則線段BN的長(zhǎng)為 ( )
A. B.
C.4 D.5
【解析】設(shè)BN=x,由折疊的性質(zhì)可得DN=AN=9-x.∵D是BC邊的中點(diǎn),∴BD=3,在Rt△NBD中,由勾股定理,得x2+32=(9-x)2,解得x=4.∴線段BN的長(zhǎng)為4.
【答案】 C
【針對(duì)訓(xùn)練】
1.如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(-2,3),
2、以O(shè)為圓心,OP的長(zhǎng)為半徑畫(huà)弧,交x軸的負(fù)半軸于點(diǎn)A,則點(diǎn)A的橫坐標(biāo)是 (C)
A.- B.
C.- D.
2.一塊直角三角形綠地,兩直角邊長(zhǎng)分別為3 m,4 m,現(xiàn)在要將綠地?cái)U(kuò)充成等腰三角形,且只能將長(zhǎng)為3 m的直角邊向一個(gè)方向延長(zhǎng),則等腰三角形的腰長(zhǎng)為 4或5或 m.?
3.如圖,四邊形ABCD是邊長(zhǎng)為9的正方形紙片,將其沿MN折疊,使點(diǎn)B落在CD邊上的B'處,點(diǎn)A對(duì)應(yīng)點(diǎn)為A',且B'C=3,則AM的長(zhǎng)為 2 .?
類(lèi)型2 勾股定理的實(shí)際應(yīng)用
典例2
如圖,小亮將升旗的繩子拉到旗桿底端,繩子末端剛好接觸到地面,然后將繩子末端拉到距離旗桿8 m處,發(fā)現(xiàn)此時(shí)繩子末端距離
3、地面2 m.求旗桿的高度.(滑輪上方的部分忽略不計(jì))
【解析】如圖所示,作BC⊥AE于點(diǎn)C,則BC=DE=8.設(shè)AE=x m,則AB=x m,AC=(x-2)m,在Rt△ABC中,AC2+BC2=AB2,即(x-2)2+82=x2,解得x=17,即旗桿的高度為17 m.
【針對(duì)訓(xùn)練】
1.一個(gè)無(wú)蓋的圓柱形杯子,底面直徑長(zhǎng)12 cm,高為16 cm,將一根長(zhǎng)24 cm的竹筷子放入其中,杯口外面露出一部分,甲、乙、丙、丁四名同學(xué)測(cè)量露在外面一部分的長(zhǎng)度,他們測(cè)量的結(jié)果是甲:3 cm,乙:6 cm,丙:9 cm,丁:12 cm,則測(cè)量正確的是 (B)
A.甲 B.乙 C.丙 D.丁
4、
2.如圖,一艘輪船以16海里/時(shí)的速度從港口A出發(fā)向東北方向航行,另一艘輪船以12海里/時(shí)的速度同時(shí)從港口A出發(fā)向東南方向航行,離開(kāi)港口2小時(shí)后,則兩船相距 (C)
A.25海里 B.32海里
C.40海里 D.56海里
3.如圖,在長(zhǎng)方形ABCD中,M為BC邊上一點(diǎn),連接AM,過(guò)點(diǎn)D作DE⊥AM,垂足為E,若DE=DC=2,AE=2EM,則BM的長(zhǎng)為? .?
4.如圖,某??萍紕?chuàng)新興趣小組用他們?cè)O(shè)計(jì)的機(jī)器人,在平坦的操場(chǎng)上進(jìn)行走展示.輸入指令后,機(jī)器人從出發(fā)點(diǎn)A先向東走10米,又向南走40米,再向西走20米,又向南走40米,再向東走70米到達(dá)終止點(diǎn)B.求終止點(diǎn)B與原出發(fā)點(diǎn)A的距
5、離AB.
解:過(guò)點(diǎn)A作AC⊥MB于點(diǎn)C.
在Rt△ABC中,AC=40+40=80,BC=70-20+10=60,
AB==100.
答:終止點(diǎn)B與原出發(fā)點(diǎn)A的距離AB為100米.
類(lèi)型3 運(yùn)用勾股定理的逆定理判斷直角三角形
典例3 若△ABC的三邊a,b,c滿足a=m-1,b=2,c=m+1(m>1),試判斷△ABC的形狀.
【解析】∵a2+b2=(m-1)2+(2)2=m2+2m+1,c2=(m+1)2=m2+2m+1,∴a2+b2=c2,∴△ABC是直角三角形.
【針對(duì)訓(xùn)練】
1.在△ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,且滿足b2-a2=c2,則
6、下列判斷正確的是 (A)
A.∠A與∠C互余 B.∠B與∠C互余
C.∠A與∠B互余 D.△ABC是等腰三角形
2.若△ABC的三邊a,b,c滿足(a-b)(a2+b2-c2)=0,則△ABC是 (C)
A.等腰三角形
B.直角三角形
C.等腰三角形或直角三角形
D.等腰直角三角形
3.如圖,P是等邊△ABC內(nèi)一點(diǎn),連接PA,PB,PC,PA∶PB∶PC=3∶4∶5,以AC為邊作△AP'C≌△APB,連接PP',則有以下結(jié)論:①△APP'是等邊三角形;②△PCP'是直角三角形;③∠APB=150°;④∠AP'C=105°.其中一定正確的是?、佗冖邸?(把所有正確答案的序號(hào)都
7、填在橫線上)?
類(lèi)型4 勾股定理及其逆定理的綜合應(yīng)用
1.如圖,在4×4方格中作以AB為一邊的Rt△ABC,要求點(diǎn)C也在格點(diǎn)上,這樣的Rt△ABC能作出 (D)
A.2個(gè) B.3個(gè)
C.4個(gè) D.6個(gè)
2.如圖,每個(gè)小正方形的邊長(zhǎng)均為1,A,B,C是小正方形的頂點(diǎn),則△ABC的面積為 (C)
A. B.
C. D.5
3.如圖,在四邊形ABCD中,DA⊥AB,DA=AB=,BC=,DC=1,則∠ADC的度數(shù)是 135° .?
4.如圖,E,F分別是正方形ABCD中BC和CD邊上的點(diǎn),CE=BC,F為CD的中點(diǎn),連接AF,AE,EF.請(qǐng)判斷△AEF的形狀,并說(shuō)明理由.
解:△AEF是直角三角形.
理由:設(shè)AB=4a,則DF=FC=2a,EC=a,BE=3a,
根據(jù)勾股定理得EF=a,AF=a,AE==5a.
∵EF2+AF2=5a2+20a2=25a2=AE2,
∴△AEF是直角三角形.