2022年高中數(shù)學 拋物線教案 蘇教版選修1-1

上傳人:xt****7 文檔編號:105220102 上傳時間:2022-06-11 格式:DOC 頁數(shù):4 大?。?7.52KB
收藏 版權(quán)申訴 舉報 下載
2022年高中數(shù)學 拋物線教案 蘇教版選修1-1_第1頁
第1頁 / 共4頁
2022年高中數(shù)學 拋物線教案 蘇教版選修1-1_第2頁
第2頁 / 共4頁
2022年高中數(shù)學 拋物線教案 蘇教版選修1-1_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高中數(shù)學 拋物線教案 蘇教版選修1-1》由會員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學 拋物線教案 蘇教版選修1-1(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高中數(shù)學 拋物線教案 蘇教版選修1-1 【考點透視】 一、考綱指要 掌握拋物線的定義、標準方程和簡單的幾何性質(zhì). 二、命題落點 1.考察拋物線過焦點的性質(zhì),如例1; 2.拋物線上張直角問題的探究, 考察拋物線上互相垂直的弦的應用,如例2; 3.定值及定點問題是解幾問題研究的重點內(nèi)容,此類問題在各類考試中是一個熱點,如例3. 【典例精析】 例1: 設兩點在拋物線上,是AB的垂直平分線, (1)當且僅當取何值時,直線經(jīng)過拋物線的焦點F?證明你的結(jié)論; (2)當直線的斜率為2時,求在y軸上截距的取值范圍. 解析:(1)∵拋物線,即,∴, ∴焦點為 (i)直線

2、的斜率不存在時,顯然有=0; (ii)直線的斜率存在時,設為k, 截距為b, 即直線:y=kx+B. 由已知得: 即的斜率存在時,不可能經(jīng)過焦點 所以當且僅當=0時,直線經(jīng)過拋物線的焦點F (2)設在y軸上截距為b, 即直線:y=2x+b,AB:.由得, ∴,且, ∴, ∴. 所以在y軸上截距的取值范圍為 例2: x y O A B 在平面直角坐標系中,拋物線上異于坐標原點的兩不同動點A、B滿足(如圖所示) (1)求得重心(即三角形三條中線的交點) 的軌跡方程; (2)的面積是否存在最小值?若存在,請求出 最小值;若不存在,請說明理由

3、. 解析:?。?)∵直線的斜率顯然存在, ∴設直線的方程為, ,依題意得 ,① ∴,②  ③ ∵,∴,即 ,④ 由③④得,,∴ ∴設直線的方程為 ∴①可化為 ,∴ ⑤, 設的重心G為,則 ⑥ , ⑦, 由⑥⑦得 ,即,這就是的重心的軌跡方程. (2)由弦長公式得 把②⑤代入上式,得 , 設點到直線的距離為,則, ∴ , ∴ 當,有最小值, ∴的面積存在最小值,最小值是 . 例3: M是拋物線上y2=x上的一點,動弦ME、MF分別交x軸于A、B兩點,且MA=MB. (1)若M為定點,證明:直線EF的

4、斜率為定值; (2)若M為動點,且∠EMF=90°,求△EMF的重心G的軌跡方程. 解析:(1)設M(y,y0),直線ME的斜率為k(k>0), 則直線MF的斜率為-k,方程為 ∴由,消, 解得, ∴(定值). 所以直線EF的斜率為定值. (2)直線ME的方程為 由得 同理可得 設重心G(x, y),則有 消去參數(shù)得 【常見誤區(qū)】 1.運算正確率太低, 這是考生在解解析幾何問題中常出現(xiàn)的問題, 即會而不對. 2.拋物線中的焦點坐標與準線方程求解過程中常誤求出二倍關(guān)系; 3.定點與定值問題總體思路不能定位,引入?yún)⒆兞窟^多,沒有求簡意識,使問題復雜化. 【基

5、礎(chǔ)演練】 1.雙曲線的離心率為2,有一個焦點與拋物線的焦點重合,則mn的值為 (  ) A. B. C. D. 2.已知雙曲線的中心在原點,離心率為.若它的一條準線與拋物線 的準線重合,則該雙曲線與拋物線的交點到原點的距離是 ( ) A. B. C. D.21 3.已知雙曲線的一條準線與拋物線的準線重合,則該雙曲線的離心率為 ( ) A. B. C. D. 4. 拋物線上的一點M到焦點的距離為1,則點M的縱坐標是( ) A. B. C. D.0 5.過拋物線的焦點作一條直線與拋物線相交于A、B兩點,它們的橫坐標之和等于5,則這樣的直線

6、 條. 6.連接拋物線上任意四點組成的四邊形可能是 (填寫所有正確選項的序號). ①菱形 ②有3條邊相等的四邊形 ③梯形 ④平行四邊形 ⑤有一組對角相等的四邊形 7.拋物線以軸為準線,且過點,證明:不論點在坐標平面內(nèi)的位置如何變化,拋物線頂點的軌跡的離心率是定值. 8. 已知拋物線,過動點且斜率為的直線與該拋物線交于不同兩點,, (1)求取值范圍; (2)若線段垂直平分線交軸于點,求面積的最大值 9.已知動圓過定點P(1,0),且與定直線相切,點C在l上. (1)求動圓圓心的軌跡M的方程; (2)設過點P,且斜率為-的直線與曲線M相交于A,B兩點. (i)問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由; (ii)當△ABC為鈍角三角形時,求這種點C的縱坐標的取值范圍.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!