《2022年高中數學 函數的表示法教案 新人教A版》由會員分享,可在線閱讀,更多相關《2022年高中數學 函數的表示法教案 新人教A版(3頁珍藏版)》請在裝配圖網上搜索。
1、2022年高中數學 函數的表示法教案 新人教A版
教學目的:(1)明確函數的三種表示方法;
(2)在實際情境中,會根據不同的需要選擇恰當的方法表示函數;
(3)通過具體實例,了解簡單的分段函數,并能簡單應用;
(4)糾正認為“y=f(x)”就是函數的解析式的片面錯誤認識.
教學重點:函數的三種表示方法,分段函數的概念.
教學難點:根據不同的需要選擇恰當的方法表示函數,什么才算“恰當”?分段函數的表示及其圖象.
教學過程:
一、 引入課題
1. 復習:函數的概念;
2. 常用的函數表示法及各自的優(yōu)點:
(1)解析法;
(2)圖象法;
(3)列表法.
二、 新課教學
2、(一)典型例題
例1.某種筆記本的單價是5元,買x (x∈{1,2,3,4,5})個筆記本需要y元.試用三種表示法表示函數y=f(x) .
分析:注意本例的設問,此處“y=f(x)”有三種含義,它可以是解析表達式,可以是圖象,也可以是對應值表.
解:(略)
注意:
函數圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;
解析法:必須注明函數的定義域;
圖象法:是否連線;
列表法:選取的自變量要有代表性,應能反映定義域的特征.
鞏固練習:
課本P27練習第1題
例2.下表是某校高一(1)班三位同學在高一學年度幾次數學測試
3、的成績及班級及班級平均分表:
第一次
第二次
第三次
第四次
第五次
第六次
王 偉
98
87
91
92
88
95
張 城
90
76
88
75
86
80
趙 磊
68
65
73
72
75
82
班平均分
88.2
78.3
85.4
80.3
75.7
82.6
請你對這三們同學在高一學年度的數學學習情況做一個分析.
分析:本例應引導學生分析題目要求,做學情分析,具體要分析什么?怎么分析?借助什么工具?
解:(略)
注意:
本例為了研究學生的學習情況,將離散的點用虛線連接,這樣更便于研究成
4、績的變化特點;
本例能否用解析法?為什么?
鞏固練習:
課本P27練習第2題
例3.畫出函數y = | x | .
解:(略)
鞏固練習:課本P27練習第3題
拓展練習:
任意畫一個函數y=f(x)的圖象,然后作出y=|f(x)| 和 y=f (|x|) 的圖象,并嘗試簡要說明三者(圖象)之間的關系.
課本P27練習第3題
例4.某市郊空調公共汽車的票價按下列規(guī)則制定:
(1) 乘坐汽車5公里以內,票價2元;
(2) 5公里以上,每增加5公里,票價增加1元(不足5公里按5公里計算).
已知兩個相鄰的公共汽車站間相距約為1公里,如果沿途(包括起點站和終點站)設20個汽
5、車站,請根據題意,寫出票價與里程之間的函數解析式,并畫出函數的圖象.
分析:本例是一個實際問題,有具體的實際意義.根據實際情況公共汽車到站才能停車,所以行車里程只能取整數值.
解:設票價為y元,里程為x公里,同根據題意,
如果某空調汽車運行路線中設20個汽車站(包括起點站和終點站),那么汽車行駛的里程約為19公里,所以自變量x的取值范圍是{x∈N*| x≤19}.
由空調汽車票價制定的規(guī)定,可得到以下函數解析式:
()
根據這個函數解析式,可畫出函數圖象,如下圖所示:
注意:
本例具有實際背景,所以解題時應考慮其實際意義;
本題可否用列表法表示函數,如果可以,應怎樣列表?
實踐與拓展:
請你設計一張乘車價目表,讓售票員和乘客非常容易地知道任意兩站之間的票價.(可以實地考查一下某公交車線路)
說明:象上面兩例中的函數,稱為分段函數.
注意:分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式并用一個左大括號括起來,并分別注明各部分的自變量的取值情況.
三、 歸納小結,強化思想
理解函數的三種表示方法,在具體的實際問題中能夠選用恰當的表示法來表示函數,注意分段函數的表示方法及其圖象的畫法.
四、 作業(yè)布置
課本P28 習題1.2(A組) 第8—12題 (B組)第2、3題