2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第六章 第1講 數(shù)列的概念與簡單表示法 理 新人教A版

上傳人:xt****7 文檔編號:105270013 上傳時間:2022-06-11 格式:DOC 頁數(shù):5 大?。?8.52KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第六章 第1講 數(shù)列的概念與簡單表示法 理 新人教A版_第1頁
第1頁 / 共5頁
2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第六章 第1講 數(shù)列的概念與簡單表示法 理 新人教A版_第2頁
第2頁 / 共5頁
2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第六章 第1講 數(shù)列的概念與簡單表示法 理 新人教A版_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第六章 第1講 數(shù)列的概念與簡單表示法 理 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第六章 第1講 數(shù)列的概念與簡單表示法 理 新人教A版(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第六章 第1講 數(shù)列的概念與簡單表示法 理 新人教A版 一、選擇題 1.數(shù)列{an}:1,-,,-,…的一個通項公式是(  ) A.a(chǎn)n=(-1)n+1(n∈N+) B.a(chǎn)n=(-1)n-1(n∈N+) C.a(chǎn)n=(-1)n+1(n∈N+) D.a(chǎn)n=(-1)n-1(n∈N+) 解析 觀察數(shù)列{an}各項,可寫成:,-,,-,故選D. 答案 D 2.把1,3,6,10,15,21這些數(shù)叫做三角形數(shù),這是因為這些數(shù)目的點子可以排成一個正三角形(如圖所示). 則第七個三角形數(shù)是(  ). A.27 B.28 C.29

2、 D.30 解析 觀察三角形數(shù)的增長規(guī)律,可以發(fā)現(xiàn)每一項與它的前一項多的點數(shù)正好是本身的序號,所以根據(jù)這個規(guī)律計算即可.根據(jù)三角形數(shù)的增長規(guī)律可知第七個三角形數(shù)是1+2+3+4+5+6+7=28. 答案 B 3.已知數(shù)列{an}的前n項和為Sn,且Sn=2an-1(n∈N*),則a5= (  ). A.-16 B.16 C.31 D.32 解析 當n=1時,S1=a1=2a1-1,∴a1=1, 又Sn-1=2an-1-1(n≥2),∴Sn-Sn-1=an=2(an-an-1). ∴=2.∴an=1×2n-1,∴a5=24=16.

3、答案 B 4.將石子擺成如圖的梯形形狀,稱數(shù)列5,9,14,20,…為梯形數(shù),根據(jù)圖形的構(gòu)成,此數(shù)列的第2 014項與5的差即a2 014-5=(  ). A.2 020×2 012 B.2 020×2 013 C.1 010×2 012 D.1 010×2 013 解析 結(jié)合圖形可知,該數(shù)列的第n項an=2+3+4+…+(n+2).所以a2 014-5=4+5+…+2 016=2 013×1 010.故選D. 答案 D 5.在數(shù)列{an}中,an=-2n2+29n+3,則此數(shù)列最大項的值是 (  ). A.103 B. C. D.10

4、8 解析 根據(jù)題意并結(jié)合二次函數(shù)的性質(zhì)可得:an=-2n2+29n+3=-2+3=-22+3+, ∴n=7時,an取得最大值,最大項a7的值為108. 答案 D 6.定義運算“*”,對任意a,b∈R,滿足①a*b=b*a;②a*0=a;(3)(a*b)*c=c*(ab)+(a*c)+(c*b).設(shè)數(shù)列{an}的通項為an=n**0,則數(shù)列{an}為(  ). A.等差數(shù)列 B.等比數(shù)列 C.遞增數(shù)列 D.遞減數(shù)列 解析 由題意知an=*0=0]n·+(n*0)+)=1+n+,顯然數(shù)列{an} 既不是等差數(shù)列也不是等比數(shù)列;又函數(shù)y=x+在[1,+∞)上為增函數(shù),

5、所以數(shù)列{an}為遞增數(shù)列. 答案 C 二、填空題 7.在函數(shù)f(x)=中,令x=1,2,3,…,得到一個數(shù)列,則這個數(shù)列的前5項是________. 答案 1,,,2, 8.已知數(shù)列{an}滿足a1=1,且an=n(an+1-an)(n∈N*),則a2=________;an=________. 解析 由an=n(an+1-an),可得=, 則an=···…··a1=×××…××1=n,∴a2=2,an=n. 答案 2 n 9.已知f(x)為偶函數(shù),f(2+x)=f(2-x),當-2≤x≤0時,f(x)=2x,若n∈N*,an=f(n),則a2 013=________.

6、 解析 ∵f(x)為偶函數(shù),∴f(x)=f(-x), ∴f(x+2)=f(2-x)=f(x-2). 故f(x)周期為4, ∴a2 013=f(2 013)=f(1)=f(-1)=2-1=. 答案  10.已知數(shù)列{an}的前n項和Sn=n2-9n,第k項滿足5<ak<8,則k的值為________. 解析 ∵Sn=n2-9n, ∴n≥2時,an=Sn-Sn-1=2n-10, a1=S1=-8適合上式,∴an=2n-10(n∈N*), ∴5<2k-10<8,得7.5<k<9.∴k=8. 答案 8 三、解答題 11.數(shù)列{an}的通項公式是an=n2-7n+6. (1)這

7、個數(shù)列的第4項是多少? (2)150是不是這個數(shù)列的項?若是這個數(shù)列的項,它是第幾項? (3)該數(shù)列從第幾項開始各項都是正數(shù)? 解 (1)當n=4時,a4=42-4×7+6=-6. (2)令an=150,即n2-7n+6=150,解得n=16,即150是這個數(shù)列的第16項. (3)令an=n2-7n+6>0,解得n>6或n<1(舍), ∴從第7項起各項都是正數(shù). 12.若數(shù)列{an}的前n項和為Sn,且滿足an+2SnSn-1=0(n≥2),a1=. (1)求證:成等差數(shù)列; (2)求數(shù)列{an}的通項公式. (1)證明 當n≥2時,由an+2SnSn-1=0, 得Sn

8、-Sn-1=-2SnSn-1,所以-=2, 又==2,故是首項為2,公差為2的等差數(shù)列. (2)解 由(1)可得=2n,∴Sn=. 當n≥2時, an=Sn-Sn-1=-==-. 當n=1時,a1=不適合上式. 故an= 13.設(shè)數(shù)列{an}的前n項和為Sn.已知a1=a(a≠3),an+1=Sn+3n,n∈N*. (1)設(shè)bn=Sn-3n,求數(shù)列{bn}的通項公式; (2)若an+1≥an,n∈N*,求a的取值范圍. 解 (1)依題意,Sn+1-Sn=an+1=Sn+3n, 即Sn+1=2Sn+3n,由此得Sn+1-3n+1=2(Sn-3n), 又S1-31=a-3(

9、a≠3),故數(shù)列{Sn-3n}是首項為a-3,公比為2的等比數(shù)列, 因此,所求通項公式為bn=Sn-3n=(a-3)2n-1,n∈N*. (2)由(1)知Sn=3n+(a-3)2n-1,n∈N*, 于是,當n≥2時,an=Sn-Sn-1=3n+(a-3)2n-1-3n-1-(a-3)2n-2=2×3n-1+(a-3)2n-2, 當n=1時,a1=a不適合上式, 故an= an+1-an=4×3n-1+(a-3)2n-2 =2n-2, 當n≥2時,an+1≥an?12·n-2+a-3≥0?a≥-9. 又a2=a1+3>a1. 綜上,所求的a的取值范圍是[-9,+∞). 14

10、.在等差數(shù)列{an}中,a3+a4+a5=84,a9=73. (1)求數(shù)列{an}的通項公式; (2)對任意m∈N*,將數(shù)列{an}中落入?yún)^(qū)間(9m,92m)內(nèi)的項的個數(shù)記為bm,求數(shù) 列{bm}的前m項和Sm. 解 (1)因為{an}是一個等差數(shù)列, 所以a3+a4+a5=3a4=84,即a4=28. 設(shè)數(shù)列{an}的公差為d,則5d=a9-a4=73-28=45,故d=9. 由a4=a1+3d得28=a1+3×9,即a1=1. 所以an=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*). (2)對m∈N*,若9m<an<92m, 則9m+8<9n<92m+8,因此9m-1+1≤n≤92m-1, 故得bm=92m-1-9m-1. 于是Sm=b1+b2+b3+…+bm =(9+93+…+92m-1)-(1+9+…+9m-1) =- =.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!