2022年高中數(shù)學 第三章《立體幾何中的向量方法》教案 新人教A版選修2-1

上傳人:xt****7 文檔編號:105272285 上傳時間:2022-06-11 格式:DOC 頁數(shù):5 大?。?4.52KB
收藏 版權申訴 舉報 下載
2022年高中數(shù)學 第三章《立體幾何中的向量方法》教案 新人教A版選修2-1_第1頁
第1頁 / 共5頁
2022年高中數(shù)學 第三章《立體幾何中的向量方法》教案 新人教A版選修2-1_第2頁
第2頁 / 共5頁
2022年高中數(shù)學 第三章《立體幾何中的向量方法》教案 新人教A版選修2-1_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高中數(shù)學 第三章《立體幾何中的向量方法》教案 新人教A版選修2-1》由會員分享,可在線閱讀,更多相關《2022年高中數(shù)學 第三章《立體幾何中的向量方法》教案 新人教A版選修2-1(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高中數(shù)學 第三章《立體幾何中的向量方法》教案 新人教A版選修2-1 空間距離 利用向量方法求解空間距離問題,可以回避此類問題中大量的作圖、證明等步驟,而轉化為向量間的計算問題. 例1如圖,已知正方形ABCD的邊長為4,E、F分別是AB、AD的中點,GC⊥平面ABCD,且GC=2,求點B到平面EFG的距離. 分析:由題設可知CG、CB、CD兩兩互相垂直,可以由此建立空間直角坐標系.用向量法求解,就是求出過B且垂直于平面EFG的向量,它的長即為點B到平面EFG的距離. 解:如圖,設4i,4j,2k,以i、j、k為坐標向量建立空間直角坐標系C-xyz. 由題設C(0,0,0),

2、A(4,4,0),B(0,4,0),D(4,0,0),E(2,4,0),F(xiàn)(4,2,0),G(0,0,2). ∴ ,,      ,, . 設平面EFG,M為垂足,則M、G、E、F四點共面,由共面向量定理知,存在實數(shù)a、b、c,使得, ∴ =(2a+4b,-2b-4c,2c). 由平面EFG,得,,于是   ,. ∴  整理得:,解得. ∴?。?2a+4b,-2b-4c,2c)=. ∴  故點B到平面EFG的距離為. 說明:用向量法求點到平面的距離,常常不必作出垂線段,只需利用垂足在平面內、共面向量定理、兩個向量垂直的充要條件解出垂線段對應的向量就可以了. 例2已知

3、正方體ABCD-的棱長為1,求直線與AC的距離. 分析:設異面直線、AC的公垂線是直線l,則線段在直線l上的射影就是兩異面直線的公垂線段,所以此題可以利用向量的數(shù)量積的幾何意義求解. 解:如圖,設i,j,k,以i、j、k為坐標向量建立空間直角坐標系-xyz,則有 ,,,. ∴ ,,. 設n是直線l方向上的單位向量,則. ∵ n,n, ∴ ,解得或. 取n,則向量在直線l上的投影為    n··. 由兩個向量的數(shù)量積的幾何意義知,直線與AC的距離為. 向量的內積與二面角的計算 在《高等代數(shù)與解析幾何》課程第一章向量代數(shù)的教學中,講到幾何空間的內積時,有一個例題

4、(見[1],p53)要求證明如下的公式: (1) 其中點O是二面角P-MN-Q的棱MN上的點,OA、OB分別在平面P和平面Q內。,, 。為二面角P-MN-Q(見圖1)。 圖1 公式(1)可以利用向量的內積來加以證明: 以Q為坐標平面,直線MN為y軸,如圖1建立直角坐標系。 記xOz平面與平面P的交線為射線OD,則,得 ,,。 分別沿射線OA、OB的方向上作單位向量,,則。 由計算知,的坐標分別為 ,, 于是, 。 公式(1)在立體幾何計算二面角的平面角時是有用的。我們來介紹如下的兩個應用。 例1.立方體ABCD-A1

5、B1C1D1的邊長為1,E、F、G、H、I分別為A1D1、A1A、A1B1、B1C1、B1B的中點。 求面EFG和面GHI的夾角的大小(用反三角函數(shù)表示)。 解 由于圖2中所畫的兩平面EFG和GHI只有一個公共點,沒有交線,所以我們可以將該立方體沿AB方向平移1個單位。這樣就使平面EFG平移至平面。而就是二面角G-IH-(見圖3)。利用公式(1),只要知道了,和的大小,我們就能求出。 圖2 由已知條件,和均為等邊三角形,所以,而。因此, 圖3 , 即 。 解得 , 。 當然,在建立了直角坐標系之后,通過計算向量的外積可計算出兩平面的法向量,利用法向量同樣也

6、可算出夾角來。 例2.計算正十二面體的兩個相鄰面的夾角的大小。 解 我們知道正十二面體的每個面都是大小相同的正五邊形,且在正十二面體的每個頂點上均有3個面圍繞。設P和Q是兩個相鄰的面,MN是它們的交線(如圖4),則公式(1)中的,,分別為: , , , 因此它們均為正五邊形的內角。所以 。 圖4 所以,由公式(1)知 , 或 。 因此,,或。 如果不使用公式(1),要求出例2中的夾角的大小在計算上要復雜很多。 利用例2的結果,我們可以容易地計算出單位棱長正十二面體的體積V。 設單位棱長正十二面體的中心為O,則該十二面體可以切割成十二個全等的正五棱錐,每個五棱錐以該多面體的一個面為底面、以O為其頂點。設該正五棱錐為,從而可知: 。 再設的底面積為S、高為h,設為單位邊長正五邊形(即的底)的中心,A、B為該五邊形的兩個相鄰的頂點,H為AB的中點,,則 , , 。 仍設為正十二面體兩相鄰面的夾角,則。所以 。 但是, , 從而 , 或

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!