《2022年高二數(shù)學(xué)下學(xué)期期中試題 理(VII)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高二數(shù)學(xué)下學(xué)期期中試題 理(VII)(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高二數(shù)學(xué)下學(xué)期期中試題 理(VII)
一、選擇題
1函數(shù) 則( )
A. 3 B. 2 C. 4 D. 0
2、已知函數(shù)則( )
A. B. C. 2 D. 3
3.已知為實(shí)數(shù),若,則( )
A..1 B. C. D.
4、否定“自然數(shù)a、b、c中恰有一個(gè)偶數(shù)”時(shí)正確的反設(shè)為( )
A a、b、c都是奇數(shù)
B a、b、c都是偶數(shù)
C a、b、c中至少有兩個(gè)偶數(shù)
D
2、 a、b、c中或都是奇數(shù)或至少有兩個(gè)偶數(shù)
5.已知拋物線通過(guò)點(diǎn),且在點(diǎn)處的切線平行于直線,則拋物線方程為( ?。?
A. B.
C. D.
6.如下圖為某旅游區(qū)各景點(diǎn)的分布圖,圖中一支箭頭表示一段有方向的路,試計(jì)算順著箭頭方向,從到有幾條不同的旅游路線可走( ?。?
A.15 B.16 C.17 D.18
7.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在( ?。?
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.如圖,陰影部分的面積是( ?。?
A. B. C. D.
9.函數(shù)的導(dǎo)數(shù)是( ?。?
A. B. C. D.
3、
10.下列說(shuō)法正確的是()
A.函數(shù)有極大值,但無(wú)極小值
B.函數(shù)有極小值,但無(wú)極大值
C.函數(shù)既有極大值又有極小值
D.函數(shù)無(wú)極值
11.下列函數(shù)在點(diǎn)處沒(méi)有切線的是( )
A. B.
C. D.
12.設(shè)在上連續(xù),則在上的平均值是( ?。?
A. B. C. D.
座號(hào)
班級(jí) 姓名 考場(chǎng) 考號(hào)
高二理科數(shù)學(xué)試卷答題卡
一、選擇題:(每小題5分 ,共60分)
1
2
3
4
5
6
7
8
9
10
11
12
4、
13、函數(shù)單調(diào)遞減區(qū)間是
14.若復(fù)數(shù)為純虛數(shù),則實(shí)數(shù)的值等于 ?。?
15.已知函數(shù)在區(qū)間上的最大值是20,則實(shí)數(shù)的值等于
?。?
16、通過(guò)觀察下面兩等式的規(guī)律,請(qǐng)你寫(xiě)出一般性的命題:
________________________________________________
三、解答題
17.已知拋物線在點(diǎn)處的切線與直線垂直,求函數(shù)的最值.
18、 求函數(shù)在區(qū)間[-2,2]上的最大值與最小值
19、求曲線過(guò)點(diǎn)P(1,-1)的切線方程
5、。
20.某銀行準(zhǔn)備新設(shè)一種定期存款業(yè)務(wù),經(jīng)預(yù)測(cè),存款量與利率的平方成正比,比例系數(shù)為,且知當(dāng)利率為0.012時(shí),存款量為1.44億;又貸款的利率為時(shí),銀行吸收的存款能全部放貸出去;若設(shè)存款的利率為,,則當(dāng)為多少時(shí),銀行可獲得最大收益?
21.已知函數(shù)=ax3+cx+d(a≠0)在R上滿(mǎn)足 =-,
當(dāng)x=1時(shí)取得極值-2。(1)求的單調(diào)區(qū)間和極大值;(2)證明:對(duì)任意x1,x2∈(-1,1),不等式││<4恒成立.
.
6、
22、在各項(xiàng)為正數(shù)的數(shù)列中,數(shù)列的前n項(xiàng)和滿(mǎn)足
(1)求
(2)由(1)猜想數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明。
高二理科數(shù)學(xué)答案
一、CADDA CBCDB CD
二、填空題[-2/3,0].
答案:0
答案:
三、解答題
17.已知拋物線在點(diǎn)處的切線與直線垂直,求函數(shù)的最值.
解:由于,所以,所以拋物線在點(diǎn))處的切線的斜率為,因?yàn)榍芯€與直線垂直,所以,即,又因?yàn)辄c(diǎn)在拋物線上,所以,得.因?yàn)?,于是函?shù)沒(méi)有最值,當(dāng)時(shí),有最小值.
19、 (12分)求函數(shù)在區(qū)間[-2,2]上的最大值與最小值
7、
19、(12分)求曲線過(guò)點(diǎn)P(1,-1)的切線方程。
設(shè)Q(a ,a 2 )點(diǎn)是過(guò)P點(diǎn)的切線與的切點(diǎn),切線斜率2a,切線方程為:
過(guò)P點(diǎn)
切線方程為
20.某銀行準(zhǔn)備新設(shè)一種定期存款業(yè)務(wù),經(jīng)預(yù)測(cè),存款量與利率的平方成正比,比例系數(shù)為,且知當(dāng)利率為0.012時(shí),存款量為1.44億;又貸款的利率為時(shí),銀行吸收的存款能全部放貸出去;若設(shè)存款的利率為,,則當(dāng)為多少時(shí),銀行可獲得最大收益?
解:由題意,存款量,又當(dāng)利率為0.012時(shí),存款量為1.44億,即時(shí),;由,得,那么,
銀行應(yīng)支付的利息,
設(shè)銀行可獲收益為,則,
由于,,則,即,得或.
因?yàn)?,時(shí),,此時(shí)
8、,函數(shù)遞增;
時(shí),,此時(shí),函數(shù)遞減;
故當(dāng)時(shí),有最大值,其值約為0.164億.
21.已知函數(shù)=ax3+cx+d(a≠0)在R上滿(mǎn)足 =-,
當(dāng)x=1時(shí)取得極值-2.
(1)求的單調(diào)區(qū)間和極大值;
(2)證明:對(duì)任意x1,x2∈(-1,1),不等式││<4恒成立.
. 解:(1)由=-(x∈R)得.d=0∴= ax3+cx , =ax2+c.
由題設(shè)f(1)=-2為的極值,必有=0∴解得a=1,c=-3
∴ =3x2-3=3(x-1)(x+1) 從而==0.
當(dāng)x∈(-∞,-1)時(shí), >0則在(-∞,-1)上是增函數(shù);
在x∈ (-1,1)時(shí), <0則在(-1,1)上是減函數(shù)
當(dāng)x∈(1,+∞)時(shí), >0則在(1,+∞)上是增函數(shù)
∴=2為極大值.
(2)由(1)知, =在[-1,1]上是減函數(shù),且在[-1,1]上的最大值M==2,在
[-1,1]上的最小值m= f(2)=-2.
對(duì)任意的x1,x2∈(-1,1),恒有││