2022年高考數(shù)學回歸課本 數(shù)列教案 舊人教版

上傳人:xt****7 文檔編號:105429610 上傳時間:2022-06-12 格式:DOC 頁數(shù):6 大?。?77.52KB
收藏 版權申訴 舉報 下載
2022年高考數(shù)學回歸課本 數(shù)列教案 舊人教版_第1頁
第1頁 / 共6頁
2022年高考數(shù)學回歸課本 數(shù)列教案 舊人教版_第2頁
第2頁 / 共6頁
2022年高考數(shù)學回歸課本 數(shù)列教案 舊人教版_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學回歸課本 數(shù)列教案 舊人教版》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學回歸課本 數(shù)列教案 舊人教版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學回歸課本 數(shù)列教案 舊人教版 一、基礎知識 定義1 數(shù)列,按順序給出的一列數(shù),例如1,2,3,…,n,…. 數(shù)列分有窮數(shù)列和無窮數(shù)列兩種,數(shù)列{an}的一般形式通常記作a1, a2, a3,…,an或a1, a2, a3,…,an…。其中a1叫做數(shù)列的首項,an是關于n的具體表達式,稱為數(shù)列的通項。 定理1 若Sn表示{an}的前n項和,則S1=a1, 當n>1時,an=Sn-Sn-1. 定義2 等差數(shù)列,如果對任意的正整數(shù)n,都有an+1-an=d(常數(shù)),則{an}稱為等差數(shù)列,d叫做公差。若三個數(shù)a, b, c成等差數(shù)列,即2b=a+c,則稱b為a和c

2、的等差中項,若公差為d, 則a=b-d, c=b+d. 定理2 等差數(shù)列的性質:1)通項公式an=a1+(n-1)d;2)前n項和公式:Sn=;3)an-am=(n-m)d,其中n, m為正整數(shù);4)若n+m=p+q,則an+am=ap+aq;5)對任意正整數(shù)p, q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一個不為零,則{an}是等差數(shù)列的充要條件是Sn=An2+Bn. 定義3 等比數(shù)列,若對任意的正整數(shù)n,都有,則{an}稱為等比數(shù)列,q叫做公比。 定理3 等比數(shù)列的性質:1)an=a1qn-1;2)前n項和Sn,當q1時,Sn=;當q=1時,Sn=na1

3、;3)如果a, b, c成等比數(shù)列,即b2=ac(b0),則b叫做a, c的等比中項;4)若m+n=p+q,則aman=apaq。 定義4 極限,給定數(shù)列{an}和實數(shù)A,若對任意的>0,存在M,對任意的n>M(n∈N),都有|an-A|<,則稱A為n→+∞時數(shù)列{an}的極限,記作 定義5 無窮遞縮等比數(shù)列,若等比數(shù)列{an}的公比q滿足|q|<1,則稱之為無窮遞增等比數(shù)列,其前n項和Sn的極限(即其所有項的和)為(由極限的定義可得)。 定理3 第一數(shù)學歸納法:給定命題p(n),若:(1)p(n0)成立;(2)當p(n)時n=k成立時能推出p(n)對n=k+1成立,則由(1),(

4、2)可得命題p(n)對一切自然數(shù)n≥n0成立。 競賽常用定理 定理4 第二數(shù)學歸納法:給定命題p(n),若:(1)p(n0)成立;(2)當p(n)對一切n≤k的自然數(shù)n都成立時(k≥n0)可推出p(k+1)成立,則由(1),(2)可得命題p(n)對一切自然數(shù)n≥n0成立。 定理5 對于齊次二階線性遞歸數(shù)列xn=axn-1+bxn-2,設它的特征方程x2=ax+b的兩個根為α,β:(1)若αβ,則xn=c1an-1+c2βn-1,其中c1, c2由初始條件x1, x2的值確定;(2)若α=β,則xn=(c1n+c2) αn-1,其中c1, c2的值由x1, x2的值確定。 二、方

5、法與例題 1.不完全歸納法。 這種方法是從特殊情況出發(fā)去總結更一般的規(guī)律,當然結論未必都是正確的,但卻是人類探索未知世界的普遍方式。通常解題方式為:特殊→猜想→數(shù)學歸納法證明。 例1 試給出以下幾個數(shù)列的通項(不要求證明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)an=n2-1;2)an=3n-2n;3)an=n2-2n. 例2 已知數(shù)列{an}滿足a1=,a1+a2+…+an=n2an, n≥1,求通項an. 【解】 因為a1=,又a1+a2=22·a2, 所以a2=,a3=,猜想(n≥1).

6、證明;1)當n=1時,a1=,猜想正確。2)假設當n≤k時猜想成立。 當n=k+1時,由歸納假設及題設,a1+ a1+…+a1=[(k+1)2-1] ak+1,, 所以=k(k+2)ak+1, 即=k(k+2)ak+1, 所以=k(k+2)ak+1,所以ak+1= 由數(shù)學歸納法可得猜想成立,所以 例3 設01. 【證明】 證明更強的結論:1

7、歸納法可得①式成立,所以原命題得證。 2.迭代法。 數(shù)列的通項an或前n項和Sn中的n通常是對任意n∈N成立,因此可將其中的n換成n+1或n-1等,這種辦法通常稱迭代或遞推。 例4 數(shù)列{an}滿足an+pan-1+qan-2=0, n≥3,q0,求證:存在常數(shù)c,使得·an+ 【證明】·an+1+(pan+1+an+2)+=an+2·(-qan)+= +an(pqn+1+qan)]=q(). 若=0,則對任意n, +=0,取c=0即可. 若0,則{+}是首項為,公式為q的等比數(shù)列。 所以+=·qn. 取·即可. 綜上,結論成立。 例5 已知a1=0, an+1=5a

8、n+,求證:an都是整數(shù),n∈N+. 【證明】 因為a1=0, a2=1,所以由題設知當n≥1時an+1>an. 又由an+1=5an+移項、平方得 ① 當n≥2時,把①式中的n換成n-1得,即 ② 因為an-1

9、99=a1+a2+…+a99. 【解】 因為an+a100-n=+=, 所以S99= 例7 求和:+…+ 【解】 一般地, , 所以Sn= 例8 已知數(shù)列{an}滿足a1=a2=1,an+2=an+1+an, Sn為數(shù)列的前n項和,求證:Sn<2。 【證明】 由遞推公式可知,數(shù)列{an}前幾項為1,1,2,3,5,8,13。 因為, ① 所以。 ② 由①-②得, 所以。 又因為Sn-20, 所以Sn, 所以, 所以Sn<2,得證。 4.特征方程法。 例9 已知數(shù)列{an}滿足a1=3, a

10、2=6, an+2=4n+1-4an,求an. 【解】 由特征方程x2=4x-4得x1=x2=2. 故設an=(α+βn)·2n-1,其中, 所以α=3,β=0, 所以an=3·2n-1. 例10 已知數(shù)列{an}滿足a1=3, a2=6, an+2=2an+1+3an,求通項an. 【解】 由特征方程x2=2x+3得x1=3, x2=-1, 所以an=α·3n+β·(-1)n,其中, 解得α=,β, 所以·3]。 5.構造等差或等比數(shù)列。 例11 正數(shù)列a0,a1,…,an,…滿足=2an-1(n≥2)且a0=a1=1,求通項。 【解】 由得=1, 即

11、令bn=+1,則{bn}是首項為+1=2,公比為2的等比數(shù)列, 所以bn=+1=2n,所以=(2n-1)2, 所以an=·…··a0= 注:C1·C2·…·Cn. 例12 已知數(shù)列{xn}滿足x1=2, xn+1=,n∈N+, 求通項。 【解】 考慮函數(shù)f(x)=的不動點,由=x得x= 因為x1=2, xn+1=,可知{xn}的每項均為正數(shù)。 又+2≥,所以xn+1≥(n≥1)。又 Xn+1-==, ① Xn+1+==, ② 由①÷②得。 ③ 又>0, 由③可知對任意n∈N+,>0且,

12、所以是首項為,公比為2的等比數(shù)列。 所以·,所以, 解得·。 注:本例解法是借助于不動點,具有普遍意義。 三、基礎訓練題 1. 數(shù)列{xn}滿足x1=2, xn+1=Sn+(n+1),其中Sn為{xn}前n項和,當n≥2時,xn=_________. 2. 數(shù)列{xn}滿足x1=,xn+1=,則{xn}的通項xn=_________. 3. 數(shù)列{xn}滿足x1=1,xn=+2n-1(n≥2),則{xn}的通項xn=_________. 4. 等差數(shù)列{an}滿足3a8=5a13,且a1>0, Sn為前n項之和,則當Sn最大時,n=_________. 5. 等比數(shù)列{an}

13、前n項之和記為Sn,若S10=10,S30=70,則S40=_________. 6. 數(shù)列{xn}滿足xn+1=xn-xn-1(n≥2),x1=a, x2=b, Sn=x1+x2+…+ xn,則S100=_________. 7. 數(shù)列{an}中,Sn=a1+a2+…+an=n2-4n+1則|a1|+|a2|+…+|a10|=_________. 8. 若,并且x1+x2+…+ xn=8,則x1=_________. 9. 等差數(shù)列{an},{bn}的前n項和分別為Sn和Tn,若,則=_________. 10. 若n!=n(n-1)…2·1, 則=_________. 11.若

14、{an}是無窮等比數(shù)列,an為正整數(shù),且滿足a5+a6=48, log2a2·log2a3+ log2a2·log2a5+ log2a2·log2a6+ log2a5·log2a6=36,求的通項。 12.已知數(shù)列{an}是公差不為零的等差數(shù)列,數(shù)列{}是公比為q的等比數(shù)列,且b1=1, b2=5, b3=17, 求:(1)q的值;(2)數(shù)列{bn}的前n項和Sn。 四、高考水平訓練題 1.已知函數(shù)f(x)=,若數(shù)列{an}滿足a1=,an+1=f(an)(n∈N+),則axx=_____________. 2.已知數(shù)列{an}滿足a1=1, an=a1+2a2+3a3+…+(n-

15、1)an-1(n≥2),則{an}的通項an=. 3. 若an=n2+, 且{an}是遞增數(shù)列,則實數(shù)的取值范圍是__________. 4. 設正項等比數(shù)列{an}的首項a1=, 前n項和為Sn, 且210S30-(210+1)S20+S10=0,則an=_____________. 5. 已知,則a的取值范圍是______________. 6.數(shù)列{an}滿足an+1=3an+n(n ∈N+) ,存在_________個a1值,使{an}成等差數(shù)列;存在________個a1值,使{an}成等比數(shù)列。 7.已知(n ∈N+),則在數(shù)列{an}的前50項中,最大項與最小項分別是_

16、___________. 8.有4個數(shù),其中前三個數(shù)成等差數(shù)列,后三個數(shù)成等比數(shù)列,并且第一個數(shù)與第四個數(shù)的和中16,第二個數(shù)與第三個數(shù)的和是12,則這四個數(shù)分別為____________. 9. 設{an}是由正數(shù)組成的數(shù)列,對于所有自然數(shù)n, an與2的等差中項等于Sn與2的等比中項,則an=____________. 10. 在公比大于1的等比數(shù)列中,最多連續(xù)有__________項是在100與1000之間的整數(shù). 11.已知數(shù)列{an}中,an0,求證:數(shù)列{an}成等差數(shù)列的充要條件是 (n≥2)①恒成立。 12.已知數(shù)列{an}和{bn}中有an=an-1bn, bn=

17、(n≥2), 當a1=p, b1=q(p>0, q>0)且p+q=1時,(1)求證:an>0, bn>0且an+bn=1(n∈N);(2)求證:an+1=;(3)求數(shù)列 13.是否存在常數(shù)a, b, c,使題設等式 1·22+2·32+…+n·(n+1)2=(an2+bn+c) 對于一切自然數(shù)n都成立?證明你的結論。 五、聯(lián)賽一試水平訓練題 1.設等差數(shù)列的首項及公差均為非負整數(shù),項數(shù)不少于3,且各項和為972,這樣的數(shù)列共有_________個。 2.設數(shù)列{xn}滿足x1=1, xn=,則通項xn=__________. 3. 設數(shù)列{an}滿足a1=3, an>0,且,則通

18、項an=__________. 4. 已知數(shù)列a0, a1, a2, …, an, …滿足關系式(3-an+1)·(6+an)=18,且a0=3,則=__________. 5. 等比數(shù)列a+log23, a+log43, a+log83的公比為=__________. 6. 各項均為實數(shù)的等差數(shù)列的公差為4,其首項的平方與其余各項之和不超過100,這樣的數(shù)列至多有__________項. 7. 數(shù)列{an}滿足a1=2, a2=6, 且=2,則 ________. 8. 數(shù)列{an} 稱為等差比數(shù)列,當且僅當此數(shù)列滿足a0=0, {an+1-qan}構成公比為q的等比數(shù)列,q稱為

19、此等差比數(shù)列的差比。那么,由100以內的自然數(shù)構成等差比數(shù)列而差比大于1時,項數(shù)最多有__________項. 9.設h∈N+,數(shù)列{an}定義為:a0=1, an+1=。問:對于怎樣的h,存在大于0的整數(shù)n,使得an=1? 10.設{ak}k≥1為一非負整數(shù)列,且對任意k≥1,滿足ak≥a2k+a2k+1,(1)求證:對任意正整數(shù)n,數(shù)列中存在n個連續(xù)項為0;(2)求出一個滿足以上條件,且其存在無限個非零項的數(shù)列。 11.求證:存在唯一的正整數(shù)數(shù)列a1,a2,…,使得 a1=1, a2>1, an+1(an+1-1)= 六、聯(lián)賽二試水平訓練題 1.設an為下述自然數(shù)N的個數(shù):

20、N的各位數(shù)字之和為n且每位數(shù)字只能取1,3或4,求證:a2n是完全平方數(shù),這里n=1, 2,…. 2.設a1, a2,…, an表示整數(shù)1,2,…,n的任一排列,f(n)是這些排列中滿足如下性質的排列數(shù)目:①a1=1; ②|ai-ai+1|≤2, i=1,2,…,n-1。 試問f(xx)能否被3整除? 3.設數(shù)列{an}和{bn}滿足a0=1,b0=0,且 求證:an (n=0,1,2,…)是完全平方數(shù)。 4.無窮正實數(shù)數(shù)列{xn}具有以下性質:x0=1,xi+1

21、 (2)尋求這樣的一個數(shù)列使不等式<4對任一n均成立。 5.設x1,x2,…,xn是各項都不大于M的正整數(shù)序列且滿足xk=|xk-1-xk-2|(k=3,4,…,n)①.試問這樣的序列最多有多少項? 6.設a1=a2=,且當n=3,4,5,…時,an=, (ⅰ)求數(shù)列{an}的通項公式;(ⅱ)求證:是整數(shù)的平方。 7.整數(shù)列u0,u1,u2,u3,…滿足u0=1,且對每個正整數(shù)n, un+1un-1=kuu,這里k是某個固定的正整數(shù)。如果uxx=xx,求k的所有可能的值。 8.求證:存在無窮有界數(shù)列{xn},使得對任何不同的m, k,有|xm-xk|≥ 9.已知n個正整數(shù)a0,a1,…,an和實數(shù)q,其中0

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!