2022人教A版數(shù)學(xué)必修二 解析幾何 《圓的標(biāo)準(zhǔn)方程》教案

上傳人:xt****7 文檔編號:105532751 上傳時間:2022-06-12 格式:DOC 頁數(shù):8 大?。?3.50KB
收藏 版權(quán)申訴 舉報 下載
2022人教A版數(shù)學(xué)必修二 解析幾何 《圓的標(biāo)準(zhǔn)方程》教案_第1頁
第1頁 / 共8頁
2022人教A版數(shù)學(xué)必修二 解析幾何 《圓的標(biāo)準(zhǔn)方程》教案_第2頁
第2頁 / 共8頁
2022人教A版數(shù)學(xué)必修二 解析幾何 《圓的標(biāo)準(zhǔn)方程》教案_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022人教A版數(shù)學(xué)必修二 解析幾何 《圓的標(biāo)準(zhǔn)方程》教案》由會員分享,可在線閱讀,更多相關(guān)《2022人教A版數(shù)學(xué)必修二 解析幾何 《圓的標(biāo)準(zhǔn)方程》教案(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022人教A版數(shù)學(xué)必修二 解析幾何 《圓的標(biāo)準(zhǔn)方程》教案 一、教學(xué)目標(biāo) (一)知識教學(xué)點(diǎn) 使學(xué)生掌握圓的標(biāo)準(zhǔn)方程的特點(diǎn),能根據(jù)所給有關(guān)圓心、半徑的具體條件準(zhǔn)確地寫出圓的標(biāo)準(zhǔn)方程,能運(yùn)用圓的標(biāo)準(zhǔn)方程正確地求出其圓心和半徑,解決一些簡單的實(shí)際問題,并會推導(dǎo)圓的標(biāo)準(zhǔn)方程. (二)能力訓(xùn)練點(diǎn) 通過圓的標(biāo)準(zhǔn)方程的推導(dǎo),培養(yǎng)學(xué)生利用求曲線的方程的一般步驟解決一些實(shí)際問題的能力. (三)學(xué)科滲透點(diǎn) 圓基于初中的知識,同時又是初中的知識的加深,使學(xué)生懂得知識的連續(xù)性;通過圓的標(biāo)準(zhǔn)方程,可解決一些如圓拱橋的實(shí)際問題,說明理論既來源于實(shí)踐,又服務(wù)于實(shí)踐,可以適時進(jìn)行辯證唯物主義思想教育. 二、教

2、材分析 1.重點(diǎn):(1)圓的標(biāo)準(zhǔn)方程的推導(dǎo)步驟;(2)根據(jù)具體條件正確寫出圓的標(biāo)準(zhǔn)方程. (解決辦法:(1)通過設(shè)問,消除難點(diǎn),并詳細(xì)講解;(2)多多練習(xí)、講解.) 2.難點(diǎn):運(yùn)用圓的標(biāo)準(zhǔn)方程解決一些簡單的實(shí)際問題. (解決辦法:使學(xué)生掌握分析這類問題的方法是先弄清題意,再建立適當(dāng)?shù)闹苯亲鴺?biāo)系,使圓的標(biāo)準(zhǔn)方程形式簡單,最后解決實(shí)際問題.) 三、活動設(shè)計(jì) 問答、講授、設(shè)問、演板、重點(diǎn)講解、歸納小結(jié)、閱讀. 四、教學(xué)過程 (一)復(fù)習(xí)提問 前面,大家學(xué)習(xí)了圓的概念,哪一位同學(xué)來回答? 問題1:具有什么性質(zhì)的點(diǎn)的軌跡稱為圓? 平面內(nèi)與一定點(diǎn)距離等于定長的點(diǎn)的軌跡稱為圓(教師在黑板

3、上畫一個圓). 問題2:圖2-9中哪個點(diǎn)是定點(diǎn)?哪個點(diǎn)是動點(diǎn)?動點(diǎn)具有什么性質(zhì)?圓心和半徑都反映了圓的什么特點(diǎn)? 圓心C是定點(diǎn),圓周上的點(diǎn)M是動點(diǎn),它們到圓心距離等于定長|MC|=r,圓心和半徑分別確定了圓的位置和大?。? 問題3:求曲線的方程的一般步驟是什么?其中哪幾個步驟必不可少? 求曲線方程的一般步驟為: (1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意點(diǎn)M的坐標(biāo),簡稱建系設(shè)點(diǎn);圖2-9 (2)寫出適合條件P的點(diǎn)M的集合P={M|P(M)|},簡稱寫點(diǎn)集; (3)用坐標(biāo)表示條件P(M),列出方程f(x,y)=0,簡稱列方程; (4)化方程f(x,y)=0為最簡形式

4、,簡稱化簡方程; (5)證明化簡后的方程就是所求曲線的方程,簡稱證明. 其中步驟(1)(3)(4)必不可少. 下面我們用求曲線方程的一般步驟來建立圓的標(biāo)準(zhǔn)方程. (二)建立圓的標(biāo)準(zhǔn)方程 1.建系設(shè)點(diǎn) 由學(xué)生在黑板上畫出直角坐標(biāo)系,并問有無不同建立坐標(biāo)系的方法.教師指出:這兩種建立坐標(biāo)系的方法都對,原點(diǎn)在圓心這是特殊情況,現(xiàn)在僅就一般情況推導(dǎo).因?yàn)镃是定點(diǎn),可設(shè)C(a,b)、半徑r,且設(shè)圓上任一點(diǎn)M坐標(biāo)為(x,y). 2.寫點(diǎn)集 根據(jù)定義,圓就是集合P={M||MC|=r}. 3.列方程 由兩點(diǎn)間的距離公式得: 4.化簡方程 將上式兩邊平方得: (x-a

5、)2+(y-b)2=r2. (1) 方程(1)就是圓心是C(a,b)、半徑是r的圓的方程.我們把它叫做圓的標(biāo)準(zhǔn)方程. 這時,請大家思考下面一個問題. 問題5:圓的方程形式有什么特點(diǎn)?當(dāng)圓心在原點(diǎn)時,圓的方程是什么? 這是二元二次方程,展開后沒有xy項(xiàng),括號內(nèi)變數(shù)x,y的系數(shù)都是1.點(diǎn)(a,b)、r分別表示圓心的坐標(biāo)和圓的半徑.當(dāng)圓心在原點(diǎn)即C(0,0)時,方程為 x2+y2=r2. 教師指出:圓心和半徑分別確定了圓的位置和大小,從而確定了圓,所以,只要a,b,r三個量確定了且r>0,圓的方程就給定了.這就是說要確定圓的方程,必須具備三個獨(dú)立的條件.注意,確定a、b、r,可以根據(jù)條件

6、,利用待定系數(shù)法來解決. (三)圓的標(biāo)準(zhǔn)方程的應(yīng)用 例1  寫出下列各圓的方程:(請四位同學(xué)演板) (1)圓心在原點(diǎn),半徑是3; (3)經(jīng)過點(diǎn)P(5,1),圓心在點(diǎn)C(8,-3); (4)圓心在點(diǎn)C(1,3),并且和直線3x-4y-7=0相切. 教師糾錯,分別給出正確答案:(1)x2+y2=9;(2)(x-3)2+(y-4)2=5; 指出:要求能夠用圓心坐標(biāo)、半徑長熟練地寫出圓的標(biāo)準(zhǔn)方程. 例2  說出下列圓的圓心和半徑:(學(xué)生回答) (1)(x-3)2+(y-2)2=5; (2)(x+4)2+(y+3)2=7; (3)(x+2)2+ y2=4 教師指出:已知圓

7、的標(biāo)準(zhǔn)方程,要能夠熟練地求出它的圓心和半徑. 例3  (1)已知兩點(diǎn)P1(4,9)和P2(6,3),求以P1P2為直徑的圓的方程;(2)試判斷點(diǎn)M(6,9)、N(3,3)、Q(5,3)是在圓上,在圓內(nèi),還是在圓外? 解(1): 分析一: 從確定圓的條件考慮,需要求圓心和半徑,可用待定系數(shù)解決. 解法一:(學(xué)生口答) 設(shè)圓心C(a,b)、半徑r,則由C為P1P2的中點(diǎn)得: 又由兩點(diǎn)間的距離公式得: ∴所求圓的方程為: (x-5)2+(y-6)2=10 分析二: 從圖形上動點(diǎn)P性質(zhì)考慮,用求曲線方程的一般方法解決. 解法二:(給出板書) ∵直徑上的四周角是直角,

8、 ∴對于圓上任一點(diǎn)P(x,y),有PP1⊥PP2. 化簡得: x2+y2-10x-12y+51=0. 即(x-5)2+(y-6)2=10為所求圓的方程. 解(2):(學(xué)生閱讀課本) 分別計(jì)算點(diǎn)到圓心的距離: 因此,點(diǎn)M在圓上,點(diǎn)N在圓外,點(diǎn)Q在圓內(nèi). 這時,教師小結(jié)本題: 1.求圓的方程的方法 (1)待定系數(shù)法,確定a,b,r; (2)軌跡法,求曲線方程的一般方法. 2.點(diǎn)與圓的位置關(guān)系 設(shè)點(diǎn)到圓心的距離為d,圓半徑為r: (1)點(diǎn)在圓上d=r; (2)點(diǎn)在圓外d>r; (3)點(diǎn)在圓內(nèi)d<r. 3.以A(x1,y1)、B(x2,y2)為直徑端點(diǎn)的圓的

9、方程為(x-x1)(x-x2)+(y-y1)(y-y2)=0(證明留作作業(yè)) 例4  圖2-10是某圓拱橋的—孔圓拱的示意圖.該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱A2P2的長度(精確到0.01m). 此例由學(xué)生閱讀課本,教師巡視并做如下提示: (1)先要建立適當(dāng)直角坐標(biāo)系,使圓的標(biāo)準(zhǔn)方程形式簡單,便于計(jì)算; (2)用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程; (3)要注意P2的橫坐標(biāo)x=-2<0,縱坐標(biāo)y>0,所以A2P2的長度只有一解. (四)本課小結(jié) 1.圓的方程的推導(dǎo)步驟; 2.圓的方程的特點(diǎn):點(diǎn)(a,b)、r分別表示圓心坐標(biāo)和圓的半徑;

10、 3.求圓的方程的兩種方法:(1)待定系數(shù)法;(2)軌跡法. 五、布置作業(yè) 1.求下列條件所決定的圓的方程: (1)圓心為 C(3,-5),并且與直線x-7y+2=0相切; (2)過點(diǎn)A(3,2),圓心在直線y=2x上,且與直線y=2x+5相切. 2.已知:一個圓的直徑端點(diǎn)是A(x1,y1)、B(x2,y2). 證明:圓的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0. 3.一個等腰三角形底邊上的高等于5,底邊兩端點(diǎn)的坐標(biāo)是(-4,0)和(4,0),求它的外接圓的方程. 4.趙州橋的跨度是37.4m,圓拱高約為7.2m,求這座圓拱橋的拱圓的方程. 作業(yè)答案: 1.(1)(x-3)2+(y+5)2= 32 2.因?yàn)橹睆降亩它c(diǎn)為A(x1,y1)、B(x2,y2),則圓心和半徑分別為 所以圓的方程為 化簡得:x2-(x1+x2)x+x1x2+y2-(y1+y2)y+y1y2=0 即(x-x1)(x-x2)+(y-y1)(y-y2)=0 4.如圖2-11建立坐標(biāo)系,得拱圓的方程: x2+(y+27.88)2=27.882(-7.2≤y≤0) 六、板書設(shè)計(jì)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!