2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題五 空間幾何 5.3 空間向量與立體幾何練習(xí)

上傳人:xt****7 文檔編號:105696211 上傳時間:2022-06-12 格式:DOC 頁數(shù):7 大?。?48KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題五 空間幾何 5.3 空間向量與立體幾何練習(xí)_第1頁
第1頁 / 共7頁
2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題五 空間幾何 5.3 空間向量與立體幾何練習(xí)_第2頁
第2頁 / 共7頁
2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題五 空間幾何 5.3 空間向量與立體幾何練習(xí)_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題五 空間幾何 5.3 空間向量與立體幾何練習(xí)》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題五 空間幾何 5.3 空間向量與立體幾何練習(xí)(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)大二輪復(fù)習(xí) 專題五 空間幾何 5.3 空間向量與立體幾何練習(xí) 1.在正三棱柱ABC-A1B1C1中,AB=4,點D在棱BB1上,若BD=3,則AD與平面AA1C1C所成角的正切值為(  ) A. B. C. D. 解析: 如圖,可得·=(+)·=·=4×2×=12=5×2×cos θ(θ為與的夾角), 所以cos θ=,sin θ=,tan θ=,又因為BE⊥平面AA1C1C,所以所求角的正切值為. 答案: D 2.如圖,在矩形ABCD中,AB=2,AD=3,點E為AD的中點,現(xiàn)分別沿BE,CE將△ABE,△DCE翻折,使得點A,D重合于F,此時二面角E-B

2、C-F的余弦值為(  ) A. B. C. D. 解析: 如圖所示,取BC的中點P,連接EP,F(xiàn)P,由題意得BF=CF=2, ∴PF⊥BC,又EB=EC,∴EP⊥BC,∴∠EPF為二面角E-BC-F的平面角,而FP==,在△EPF中,cos∠EPF===. 答案: B 3.在空間直角坐標系中,以點A(4,1,9),B(10,-1,6),C(x,4,3)為頂點的△ABC是以BC為斜邊的直角三角形,則實數(shù)x的值為________. 解析: 由題意得=(6,-2,-3), =(x-4,3,-6), ·=(6,-2,-3)·(x-4,3,-6) =6(x-4)-6+18=0

3、, 解之得x=2. 答案: 2 4.已知邊長為2的正方形ABCD的四個頂點在球O的球面上,球O的體積V球=,則OA與平面ABCD所成的角的余弦值為________. 解析: 如圖,過點O作OM⊥平面ABCD,垂足為點M,則點M為正方形ABCD的中心.∵正方形ABCD的邊長為2,∴AC=2,∴AM=. ∵V球=πr3=,∴球O的半徑OA=r=2,∴OA與平面ABCD所成的角的余弦值為cos∠OAM===. 答案:  5.如圖,在四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC=,E,F(xiàn)分別是BC,A1C的中點. (

4、1)求異面直線EF,AD所成角的余弦值; (2)點M在線段A1D上,=λ.若CM∥平面AEF,求實數(shù)λ的值. 解析: (1)因為由題意知四棱柱ABCD-A1B1C1D1為直四棱柱, A1A⊥平面ABCD. 又AE?平面ABCD,AD?平面ABCD, 所以A1A⊥AE,A1A⊥AD. 在菱形ABCD中,∠ABC=,則△ABC是等邊三角形. 因為E是BC中點,所以BC⊥AE. 因為BC∥AD,所以AE⊥AD. 故建立如圖所示,以A為原點,AE為x軸,AD為y軸,AA1為z軸的空間直角坐標系A(chǔ)-xyz.則A(0,0,0),C(,1,0),D(0,2,0),A1(0,0,2),E(,

5、0,0),F(xiàn). =(0,2,0),=, cos〈,〉===, 所以異面直線EF,AD所成角的余弦值為. (2)設(shè)M(x,y,z),由于點M在線段A1D上,且=λ, 則(x,y,z-2)=λ(0,2,-2). 則M(0,2λ,2-2λ),=(-,2λ-1,2-2λ). 設(shè)平面AEF的一個法向量為n=(x0,y0,z0). 因為=(,0,0),=. 由得x0=0,y0+z0=0, 取y0=2,則z0=-1, 則平面AEF的一個法向量為n=(0,2,-1). 由于CM∥平面AEF,則n·=0,即2(2λ-1)-(2-2λ)=0,解得λ=. 6.(2018·洛陽市第一次統(tǒng)

6、考)如圖,在四棱錐P-ABCD中,E,F(xiàn)分別是PC,PD的中點,底面ABCD是邊長為2的正方形,PA=PD=2,且平面PAD⊥平面ABCD. (1)求證:平面AEF⊥平面PCD; (2)求平面AEF與平面ACE所成銳二面角的余弦值. 解析: (1)證明:由題意知,PA=PD=AD, F為PD的中點,可得AF⊥PD, ∵平面PAD⊥平面ABCD,CD⊥AD, ∴CD⊥平面PAD. 又AF?平面PAD,∴CD⊥AF, 又CD∩PD=D,∴AF⊥平面PCD,又AF?平面AEF, ∴平面AEF⊥平面PCD. (2)取AD的中點O,BC的中點G,連接OP,OG, ∵PA=PD=

7、AD,∴OP⊥AD. ∵平面PAD⊥平面ABCD,OP?平面PAD, ∴OP⊥平面ABCD. 分別以O(shè)A,OG,OP所在直線為x,y,z軸建立如圖所示的空間直角坐標系O-xyz. 則A(1,0,0),C(-1,2,0),E,F(xiàn),=,=(0,1,0). 設(shè)平面AEF的法向量為m=(x,y,z), 則即 可取m=(1,0,),為平面AEF的一個法向量. 同理,可得平面ACE的一個法向量為n=(,,1). cos〈m,n〉===. ∴平面AEF與平面ACE所成銳二面角的余弦值為. B級 1.(2018·北京卷)如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,

8、F,G分別為AA1,AC,A1C1,BB1的中點,AB=BC=,AC=AA1=2. (1)求證:AC⊥平面BEF; (2)求二面角B-CD-C1的余弦值; (3)證明:直線FG與平面BCD相交. 解析: (1)證明:∵AB=BC,且E是AC的中點, ∴AC⊥BE. ∵在三棱柱ABC-A1B1C1中,E,F(xiàn)分別是AC,A1C1的中點, ∴EF∥CC1. ∵CC1⊥平面ABC, ∴EF⊥平面ABC, ∵AC?平面ABC, ∴EF⊥AC, ∵EF,BE?平面BEF,EF∩BE=E, ∴AC⊥平面BEF. (2)由(1)知,EF⊥AC,AC⊥BE,EF⊥EB, ∴以E為原

9、點,EA,EB,EF所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系E-xyz. 則有B(0,2,0),C(-1,0,0),D(1,0,1),C1(-1,0,2),=(-1,-2,0),=(2,0,1). 設(shè)平面BCD的法向量為n=(x,y,z), ∴即可取n=(2,-1,-4). 易知平面CDC1的一個法向量為m=(0,1,0), ∴cos〈m,n〉===-, 由圖可知,二面角B-CD-C1的平面角為鈍角, ∴二面角B-CD-C1的余弦值為-. (3)證法一:∵F(0,0,2),G(0,2,1),∴=(0,2,-1). 由(2)知平面BCD的一個法向量為n=(

10、2,-1,-4), 設(shè)直線FG與平面BCD的夾角為θ, ∴sin θ=|cos〈,n〉|===≠0, ∴θ≠0,∴直線FG與平面BCD相交. 證法二:假設(shè)直線FG與平面BCD平行, 設(shè)CD與EF的交點為M,連接BM,B1F. ∵FG?平面BB1FE,且平面BB1FE∩平面BCD=BM, ∴FG∥BM,∵BG∥FM, ∴四邊形BMFG為平行四邊形, ∴FM=BG,易知FM≠BG,∴假設(shè)不成立, ∴直線FG與平面BCD相交. 2.(2018·成都市第一次診斷性檢測)如圖1,在邊長為5的菱形ABCD中,AC=6,現(xiàn)沿對角線AC把△ADC翻折到△APC的位置得到四面體P-ABC,

11、如圖2所示.已知PB=4. (1)求證:平面PAC⊥平面ABC; (2)若Q是線段AP上的點,且=,求二面角Q-BC-A的余弦值. 解析: (1)證明:取AC的中點O,連接PO,BO得到△PBO. ∵四邊形ABCD是菱形,∴PA=PC,PO⊥AC. ∵DC=5,AC=6,∴OC=3,PO=OB=4, ∵PB=4,∴PO2+OB2=PB2. ∴PO⊥OB. ∵OB∩AC=O,∴PO⊥平面ABC. ∵PO?平面PAC,∴平面PAC⊥平面ABC. (2)∵AB=BC,∴BO⊥AC. 易知OB,OC,OP兩兩垂直. 以O(shè)為坐標原點,OB,OC,OP所在直線分別為x軸、y軸、z軸建立如圖所示的空間直角坐標系O-xyz. 則B(4,0,0),C(0,3,0),P(0,0,4),A(0,-3,0). 設(shè)點Q(x,y,z). 由=,得Q. ∴=(-4,3,0),=. 設(shè)n1=(x1,y1,z1)為平面BCQ的法向量. 由得解得 取z1=15,則n1=(3,4,15). 取平面ABC的一個法向量n2=(0,0,1). ∵cos〈n1,n2〉===, ∴二面角Q-BC-A的余弦值為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!