《2022-2023學年高二數(shù)學下學期期中試題 文(普通班)》由會員分享,可在線閱讀,更多相關《2022-2023學年高二數(shù)學下學期期中試題 文(普通班)(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022-2023學年高二數(shù)學下學期期中試題 文(普通班)
一、選擇題(12*5=60分)
1. 設為虛數(shù)單位,則復數(shù)=( )
(A) 0 (B)2 (C)2 (D)2+2
2、下列變量關系為相關關系的是( )
(1)學生的學習時間與學習成績之間的關系
(2)某家庭的收入與支出之間的關系
(3)學生的身高與視力之間的關系
(4)球的體積與半徑之間的關系
A、(1)(2) B、(1)(3) C、(2)(3) D、(2)(4)
3、已知呈線性相關關系的變量
2、x、y之間的關系如下表所示,則回歸直線一定過點:( )
x
0.1
0.2
0.3
0.5
y
2.11
2.85
4.08
10.15
C、(0.3,4.08) D、(0.275,4.7975)
4、為了評價某個電視欄目的改革效果,在改革前后分別從居民點抽取了100位居民進行調查,經(jīng)過計算p(K2 ≥k0) =0.01,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是:( )
A、有1%的人認為該欄目優(yōu)秀;
B、有1%的把握認為該欄目是否優(yōu)秀與改革有關系;
C、有99%的把握認為電視欄目是否優(yōu)秀與改革有關
3、系;
D、沒有理由認為電視欄目是否優(yōu)秀與改革有關系。
5、在一次實驗中,測得(x、y)的四組值分別是A(5,6),B(7,8),C(9,10),D(11,12),則y與x之間的回歸直線方程為:( )
A、y=x+1 B、y=x-2 C、y=3x+1 D、y=-x-1
6、甲乙兩人獨立解出某道題的概率相同,已知該題被甲或乙解出的概率為0.36,求甲獨立解出該題的概率:( )
A、0.1 B、0.2 C、0.36
4、 D、0.64
7、某程序框圖如圖所示,若輸出的S=57,則判斷框內為( )
A、k>4? B、k>5? C、k>6? D、k>7?
8、閱讀右面的流程圖,若輸入的a,b,c分別是21,32,75,則輸出的a,b,c分別是( )
A、75,21,32 B、21,32,7 C、32,21,75 D、75,32,21
9、若a|b| B
5、.> C.> D.a(chǎn)2>b2
10、否定結論“至多有兩個解”的說法中,正確的是( )
A、有一解 B、有兩個解 C、至少有三個解 D、至少有兩個解
11、以下各組數(shù)不可能是某等差數(shù)列中的三項的是( )
A、3,4,5 B、 C、3,6,9 D、
12.已知不等式ax2-5x+b>0的解集為{x|-30的解集為( )
A B
6、.
C. D.
開始
b=x
輸入a,b,c
結束
輸出a,b,c
c=b
a=c
x=a
第7題
第8題
開始
S=2s+k
K=k+1
S=1,k=1
結束
輸出s
是
否
二、填空題。(5 * 5 = 25分)
13. 設,則不等式的解集為_______.
14、實部為-2,虛部為1 的復數(shù)所對應的點位于復平面的_________.
15、已知函數(shù),下面流程圖是給出x的值求其函數(shù)值的過程的一部分,其中(1)
(2)
(1)
y=3-x
輸入x
處應填 ,(2)處應填
7、
16、觀察下列數(shù)的特點:1,2,2,3,3,3, 4,4,4,4,…中,第100項是 。
17、已知等式:
根據(jù)此規(guī)律,請你寫出符合此規(guī)律的一個等式,這個等式是
三、 解答題。(65分)
18、(16分)10張獎券中有3張有獎,甲,乙兩人不放回的各從中抽1張,甲先抽,乙后抽。
求:(1)甲中獎的概率。
(2)乙中獎的概率。
(3)在甲未中獎的情況下,乙中獎的概率。
19、(12分)調查在2-3級風的海上航行中
8、男女乘客的暈船情況,結果如下表示:
暈船
不暈船
合計
男人
10
55
女人
30
合計
30
0.05
0.025
0.01
3.841
5.024
6.635
提示:
(1)請完善表格內容。
(2)根據(jù)此資料,在2-3級風的海上航行中有多大把握認為性別與暈船有關系?
20(12分)求證:
21、(15分)已知(1)已知01,則x+的最小值為?
22(10分) 用反證法證明:在一個三角形中至少有一個內角大于或等于6
9、0。
參考答案
一選擇(5*12=60分)
1
2
3
4
5
6
7
8
9
10
11
12
C
B
D
C
A
B
A
A
B
C
B
B
二 填空(5*5=25分)
13 ; 14 第二象限; 15(1);(2)。16 14;
17若則 或者
三 解答題
18 . 設甲中獎為事件A,乙中獎為事件B
(1) 則P(A)=, 4分
(2) P(B)=P(AB+B)=P(AB)+P(B)= 6分
10、(3) . 6分
19(1)5分
暈船
不暈船
合計
男人
10
45
55
女人
20
30
50
合計
30
75
105
(2)7分=>5.024
=0.025, 即有97.5%的把握認為性別與暈船有關系.
20.證:∵和都是正數(shù),
若證 , 只需證:
整理得:, 即證:21<25∵21<25當然成立, ∴原不等式成立。12分
21解析:(1)由題意可知,x(3-3x)=×3x(3-3x)≤×=,當且僅當3x=3-3x,即x=時等號成立. 7分
(2)∵x>1,∴x-1>0,
∴x+=x-1++1≥4+1=5,當且僅當x-1=,即x=3時等號成立. 8分
22證明:假設在一個三角形中,沒有一個內角大于或等于60°,即均小于60°,
則三內角和小于180°,與三角形中三內角和等于180°矛盾,
故假設不成立。原命題成立。 10分