2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題二 三角函數(shù)、平面向量 專題提能 三角與向量的創(chuàng)新考法與學(xué)科素養(yǎng)課后訓(xùn)練 文

上傳人:xt****7 文檔編號:105761920 上傳時間:2022-06-12 格式:DOC 頁數(shù):5 大?。?8KB
收藏 版權(quán)申訴 舉報 下載
2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題二 三角函數(shù)、平面向量 專題提能 三角與向量的創(chuàng)新考法與學(xué)科素養(yǎng)課后訓(xùn)練 文_第1頁
第1頁 / 共5頁
2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題二 三角函數(shù)、平面向量 專題提能 三角與向量的創(chuàng)新考法與學(xué)科素養(yǎng)課后訓(xùn)練 文_第2頁
第2頁 / 共5頁
2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題二 三角函數(shù)、平面向量 專題提能 三角與向量的創(chuàng)新考法與學(xué)科素養(yǎng)課后訓(xùn)練 文_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題二 三角函數(shù)、平面向量 專題提能 三角與向量的創(chuàng)新考法與學(xué)科素養(yǎng)課后訓(xùn)練 文》由會員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題二 三角函數(shù)、平面向量 專題提能 三角與向量的創(chuàng)新考法與學(xué)科素養(yǎng)課后訓(xùn)練 文(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022高考數(shù)學(xué)一本策略復(fù)習(xí) 專題二 三角函數(shù)、平面向量 專題提能 三角與向量的創(chuàng)新考法與學(xué)科素養(yǎng)課后訓(xùn)練 文 一、選擇題 1.定義:|a×b|=|a||b|sin θ,其中θ為向量a與b的夾角,若|a|=2,|b|=5,a·b=-6,則|a×b|等于(  ) A.-8  B.8 C.-8或8 D.6 解析:由|a|=2,|b|=5,a·b=-6,可得2×5 cos θ=-6?cos θ=-.又θ∈[0,π],所以sin θ=.從而|a×b|=2×5×=8. 答案:B 2.已知外接圓半徑為R的△ABC的周長為(2+)R,則sin A+sin B+sin C=(  ) A

2、.1+ B.1+ C.+ D.+ 解析:由正弦定理知a+b+c=2R(sin A+sin B+sin C)=(2+)R,所以sin A+sin B+sin C=1+,故選A. 答案:A 3.設(shè)a,b為非零向量,|b|=2|a|,兩組向量x1,x2,x3,x4和y1,y2,y3,y4均由2個a和2個b排列而成.若x1·y1+x2·y2+x3·y3+x4·y4所有可能取值中的最小值為4|a|2,則a與b的夾角為(  ) A. B. C. D.0 解析:設(shè)S=x1·y1+x2·y2+x3·y3+x4·y4,若S的表達(dá)式中有0個a·b,則S=2a2+2b2,記為S1,若S的表達(dá)式中有2個

3、a·b,則S=a2+b2+2a·b,記為S2,若S的表達(dá)式中有4個a·b,則S=4a·b,記為S3.又|b|=2|a|,所以S1-S3=2a2+2b2-4a·b=2(a-b)2>0,S1-S2=a2+b2-2a·b=(a-b)2>0,S2-S3=(a-b)2>0,所以S3<S2<S1,故Smin=S3=4a·b,設(shè)a,b的夾角為θ,則Smin=4a·b=8|a|2cos θ=4|a|2,即cos θ=,又θ∈[0,π],所以θ=. 答案:B 4.已知直角梯形ABCD中,AD∥BC,∠ADC=90?,AD=2,BC=1,P是腰DC上的動點(diǎn),則|+|的最小值為(  ) A.5 B.4 C.

4、3 D.6 解析:建立平面直角坐標(biāo)系如圖所示,則A(2,0),設(shè)P(0,y),C(0,b),則B(1,b),則+3=(2,-y)+3(1,b-y)=(5,3b-4y).所以|+3|=(0≤y≤b).當(dāng)y=b時,|+3|min=5. 答案:A 二、填空題 5.(2018·石家莊質(zhì)檢)非零向量m,n的夾角為,且滿足|n|=λ|m|(λ>0),向量組x1,x2,x3由一個m和兩個n排列而成,向量組y1,y2,y3由兩個m和一個n排列而成,若x1·y1+x2·y2+x3·y3所有可能值中的最小值為4m2,則λ=________. 解析:由題意,x1·y1+x2·y2+x3·y3的運(yùn)算結(jié)果

5、有以下兩種可能:①m2+m·n+n2=m2+λ|m||m|cos+λ2m2=(λ2++1)m2;②m·n+m·n+m·n=3λ|m|·|m|cos=m2.又λ2++1-=λ2-λ+1=(λ-)2+>0,所以m2=4m2,即=4,解得λ=. 答案: 6.定義平面向量的一種運(yùn)算a⊙b=|a+b|×|a-b|×sin〈a,b〉,其中〈a,b〉是a與b的夾角,給出下列命題:①若〈a,b〉=90?,則a⊙b=a2+b2;②若|a|=|b|,則(a+b)⊙(a-b)=4a·b;③若|a|=|b|,則a⊙b≤2|a|2;④若a=(1,2),b=(-2,2),則(a+b)⊙b=.其中真命題的序號是____

6、____. 解析:①中,因?yàn)椤碼,b〉=90?,則a⊙b=|a+b|×|a-b|=a2+b2,所以①成立;②中,因?yàn)閨a|=|b|,所以〈(a+b),(a-b)〉=90?,所以(a+b)⊙(a-b)=|2a|×|2b|=4|a|·|b|,所以②不成立;③中,因?yàn)閨a|=|b|,所以a⊙b=|a+b|×|a-b|sin〈a,b〉≤|a+b|×|a-b|≤=2|a|2,所以③成立;④中,因?yàn)閍=(1,2),b=(-2,2),所以a+b=(-1,4),sin〈(a+b),b〉=,所以(a+ b)⊙b=3××=,所以④不成立.故真命題的序號是①③. 答案:①③ 7.設(shè)非零向量a,b的夾角為θ,記

7、f(a,b)=acos θ-bsin θ.若e1,e2均為單位向量,且e1·e2=,則向量f(e1,e2)與f(e2,-e1)的夾角為________. 解析:由e1·e1=,可得cos〈e1,e2〉==, 故〈e1,e2〉=,〈e2,-e1〉=π-〈e2,e1〉=. f(e1,e2)=e1cos-e2sin=e1-e2, f(e2,-e1)=e2cos-(-e1)sin=e1-e2. f(e1,e2)·f(e2,-e1)=(e1-e2)· =-e1·e2=0, 所以f(e1,e2)⊥f(e2,-e1). 故向量f(e1,e2)與f(e2,-e1)的夾角為. 答案: 8.對

8、任意兩個非零的平面向量α和β,定義α。β=.若平面向量a,b滿足|a|≥|b|>0,a與b的夾角θ∈,且a。b和b。a都在集合中,則a。b=________. 解析:a。b===,① b。a===.② ∵θ∈,∴<cos θ<1. 又|a|≥|b|>0,∴0<≤1.∴0<cos θ<1,即0<b。a<1. ∵b。a∈, ∴b。a=. ①×②,得(a。b)×(b。a)=cos2 θ∈, ∴<(a。b)<1,即1<a。b<2,∴a。b=. 答案: 9.三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠(yuǎn).其中有一題:今有望海島,立兩表齊,高三丈,前后相去千歲,令后表與前表相直

9、.從前表卻行一百二十三步,人目著地取望島峰,與表末參合.從后表卻行百二十七步,人目著地取望島峰,亦與表末參合.問島高及去表各幾何?譯文如下:要測量海島上一座山峰A的高度AH,立兩根高均為3丈的標(biāo)桿BC和DE,前后標(biāo)桿相距1 000步,使后標(biāo)桿桿腳D與前標(biāo)桿桿腳B與山峰腳H在同一直線上,從前標(biāo)桿桿腳B退行123步到F,人眼著地觀測到島峰,A,C,F(xiàn)三點(diǎn)共線,從后標(biāo)桿桿腳D退行127步到G,人眼著地觀測到島峰,A,E,G三點(diǎn)也共線,問島峰的高度AH=________步.(古制:1步=6尺,1里=180丈=1 800 尺=300步) 解析:如圖所示,由題意知BC=DE=5步,BF=123步,DG=

10、127步,設(shè)AH=h步,因?yàn)锽C∥AH,所以△BCF∽△HAF,所以=,所以=,即HF=.因?yàn)镈E∥AH,所以△GDE∽△GHA,所以=,所以=,即HG=,由題意(HG-127)-(HF-123)=1 000,即--4=1 000,h=1 255,即AH=1 255步. 答案:1 255 三、解答題 10.已知下凸函數(shù)f(x)在定義域內(nèi)滿足f≤.若函數(shù)y=tan x在上是下凸函數(shù),那么在銳角△ABC中,求tan A+tan B+tan C的最小值. 解析:因?yàn)閥=tan x在上是下凸函數(shù), 則(tan A+tan B+tan C)≥tan=tan =,即tan A+tan B+tan

11、 C≥3,當(dāng)且僅當(dāng)tan A=tan B=tan C,即A=B=C=時,取等號,所以tan A+tan B+tan C的最小值為3. 11.在△ABC中,邊a,b,c分別是內(nèi)角A,B,C所對的邊,且滿足2sin B=sin A+sin C,設(shè)B的最大值為B0. (1)求B0的值; (2)當(dāng)B=B0,a=3,c=6,=時,求CD的長. 解析:(1)由題設(shè)及正弦定理知,2b=a+c,即b=. 由余弦定理知,cos B===≥=. 當(dāng)且僅當(dāng)a2=c2,即a=c時等號成立. ∵y=cos x在(0,π)上單調(diào)遞減, ∴B的最大值B0=. (2)∵B=B0=,a=3,c=6, ∴b==3, ∴c2=a2+b2,即C=,A=, 由=,知AD=AB=2,在△ACD中, 由余弦定理得CD==.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!