2022年高中數(shù)學(xué) 第三章 數(shù)列教案
《2022年高中數(shù)學(xué) 第三章 數(shù)列教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第三章 數(shù)列教案(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中數(shù)學(xué) 第三章 數(shù)列教案 本章是數(shù)列,特別是等差數(shù)列與等比數(shù)列,有著較為廣泛的實(shí)際應(yīng)用如各種產(chǎn)品尺寸常要分成若干等級(jí),當(dāng)其中的最大尺寸與最小尺寸相差不大時(shí),常按等差數(shù)列進(jìn)行分級(jí),比如鞋的尺碼;當(dāng)其中的最大尺寸與最小尺寸相差較大時(shí)(這種情況是多數(shù)),常按等比數(shù)列進(jìn)行分級(jí),比如汽車(chē)的載重量、包裝箱的重量等特別值得一提的是,數(shù)列在產(chǎn)品尺寸標(biāo)準(zhǔn)化方面有著重要作用?數(shù)列在整個(gè)中學(xué)數(shù)學(xué)教學(xué)內(nèi)容中,處于一個(gè)知識(shí)匯合點(diǎn)的地位,很多知識(shí)都與數(shù)列有著密切聯(lián)系,過(guò)去學(xué)過(guò)的數(shù)、式、方程、函數(shù)、簡(jiǎn)易邏輯等知識(shí)在這一章均得到了較為充分的應(yīng)用,而學(xué)習(xí)數(shù)列又為后面學(xué)習(xí)數(shù)列與函數(shù)的極限等內(nèi)容作了鋪墊課本采取將代數(shù)
2、、幾何打通的混編體系的主要目的是強(qiáng)化數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系,而數(shù)列正是在將各知識(shí)溝通方面發(fā)揮了重要作用由于不少關(guān)于恒等變形、解方程(組)以及一些帶有綜合性的數(shù)學(xué)問(wèn)題都與等差數(shù)列、等比數(shù)列有關(guān),學(xué)習(xí)這一章便于對(duì)學(xué)生進(jìn)行綜合訓(xùn)練,從而有助于培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)解決問(wèn)題的能力 ????本章教學(xué)約需17課時(shí),具體分配如下: 3.1 數(shù)列 約2課時(shí) 3.2 等差數(shù)列 約2課時(shí) 3.3 等差數(shù)列前n項(xiàng)和 約2課時(shí) 3.4 等比數(shù)列 約2課時(shí) 3.5 等比數(shù)列前n項(xiàng)和 約2課時(shí) 研究性課題:分期付款中的有關(guān)計(jì)算 約3課時(shí) 小結(jié)與復(fù)習(xí) 約4課時(shí) ?
3、一、內(nèi)容與要求 ????本章從內(nèi)容上看,可以分為數(shù)列、等差數(shù)列、等比數(shù)列三個(gè)部分 ????在數(shù)列這一部分,主要介紹數(shù)列的概念、分類(lèi),以及給出數(shù)列的兩種方法關(guān)于數(shù)列的概念,先給出了一個(gè)描述性定義,爾后又在此基礎(chǔ)上,給出了一個(gè)在映射、函數(shù)觀點(diǎn)下的定義,指出:“從映射、函數(shù)的觀點(diǎn)看,數(shù)列可以看作是一個(gè)定義域?yàn)檎麛?shù)集(或它的有限子集)的函數(shù)當(dāng)自變量從小到大依次取值時(shí)對(duì)應(yīng)的一列函數(shù)值”這樣就可以將數(shù)列與函數(shù)聯(lián)系起來(lái),不僅可以加深對(duì)數(shù)列概念的理解,而且有助于運(yùn)用函數(shù)的觀點(diǎn)去研究數(shù)列關(guān)于給出數(shù)列的兩種方法,其中數(shù)列的通項(xiàng)公式,教材已明確指出它就是相應(yīng)函數(shù)的解析式點(diǎn)破了這一點(diǎn),數(shù)列與函數(shù)的內(nèi)在聯(lián)系揭示
4、得就更加清楚此外,正如并非每一函數(shù)均有解析表達(dá)式一樣,也并非每一數(shù)列均有通項(xiàng)公式(有通項(xiàng)公式的數(shù)列只是少數(shù)),因而研究遞推公式給出數(shù)列的方法可使我們研究數(shù)列的范圍大大擴(kuò)展遞推是數(shù)學(xué)里的一個(gè)非常重要的概念和方法,數(shù)學(xué)歸納法證明問(wèn)題的基本思想實(shí)際上也是“遞推”在數(shù)列的研究中,不僅很多重要的數(shù)列是用遞推公式給出的,而且它也是獲得一個(gè)數(shù)列的通項(xiàng)公式的途徑:先得出較為容易寫(xiě)出的數(shù)列的遞推公式,然后再根據(jù)它推得通項(xiàng)公式但是,這項(xiàng)內(nèi)容也是極易膨脹的,例如研究用遞推公式給出的數(shù)列的性質(zhì),從數(shù)列的遞推公式推導(dǎo)通項(xiàng)公式等,這樣就會(huì)加重學(xué)生負(fù)擔(dān)考慮到學(xué)生是在高一學(xué)習(xí),我們必須牢牢把握教學(xué)要求,只要能初步體會(huì)一下用遞
5、推方法給出數(shù)列的思想,能根據(jù)遞推公式寫(xiě)出一個(gè)數(shù)列的前幾項(xiàng)就行了 ????在等差數(shù)列這一部分,在講等差數(shù)列的概念時(shí),突出了它與一次函數(shù)的聯(lián)系,這樣就便于利用所學(xué)過(guò)的一次函數(shù)的知識(shí)來(lái)認(rèn)識(shí)等差數(shù)列的性質(zhì):從圖象上看,為什么表示等差數(shù)列的各點(diǎn)都均勻地分布在一條直線上,為什么兩項(xiàng)可以決定一個(gè)等差數(shù)列(從幾何上看兩點(diǎn)可以決定一條直線)在推導(dǎo)等差數(shù)列前n項(xiàng)和的公式時(shí),突出了數(shù)列的一個(gè)重要的對(duì)稱性質(zhì):與任一項(xiàng)前后等距離的兩項(xiàng)的平均數(shù)都與該項(xiàng)相等,認(rèn)識(shí)這一點(diǎn)對(duì)解決問(wèn)題會(huì)帶來(lái)一些方便 ????在等比數(shù)列這一部分,在講等比數(shù)列的概念和通項(xiàng)公式時(shí)也突出了它與指數(shù)函數(shù)的聯(lián)系這不僅可加深對(duì)等比數(shù)列的認(rèn)識(shí),而且可以對(duì)處
6、理某類(lèi)問(wèn)題的指數(shù)函數(shù)方法和等比數(shù)列方法進(jìn)行比較,從而有利于對(duì)這些方法的掌握 二、本章的特點(diǎn) ????(一)在啟發(fā)學(xué)生思維上下功夫 ????本章內(nèi)容,是培養(yǎng)學(xué)生觀察問(wèn)題、啟發(fā)學(xué)生思考問(wèn)題的好素材,使學(xué)生在獲得知識(shí)的基礎(chǔ)上,觀察和思維能力得到提高 ????在問(wèn)題的提出和概念的引入方面,為了引起學(xué)生的興趣,在本章的“前言”里用了一個(gè)有關(guān)國(guó)際象棋棋盤(pán)的古代傳說(shuō)作為引入的例子它用一個(gè)涉及求等比數(shù)列的前n項(xiàng)和的麥粒數(shù)的計(jì)算問(wèn)題給學(xué)生造成了一個(gè)不學(xué)本章知識(shí)、難獲問(wèn)題答案的懸念,又在學(xué)了等比數(shù)列后回過(guò)頭來(lái)解開(kāi)這個(gè)懸念;在講等差數(shù)列與等比數(shù)列的概念時(shí),都是先寫(xiě)出幾個(gè)數(shù)列,讓學(xué)生先觀察它們的共同特點(diǎn),然
7、后在歸納共同特點(diǎn)的基礎(chǔ)上給出相應(yīng)的定義 ????在推導(dǎo)結(jié)論時(shí),注意發(fā)揮它們?cè)趩l(fā)學(xué)生思維方面的作用例如在講等差數(shù)列前n項(xiàng)和的公式時(shí),沒(méi)有平鋪直敘地推導(dǎo)公式,而是先提出問(wèn)題: 1+2+3+...+100 = ?,并指出著名數(shù)學(xué)家高斯10歲時(shí)便很快算出它的結(jié)果,以激發(fā)學(xué)生的求解熱情,然后讓學(xué)生在觀察高斯算法的基礎(chǔ)上,發(fā)現(xiàn)上述數(shù)列的一個(gè)對(duì)稱性質(zhì):任意第k項(xiàng)與倒數(shù)第k項(xiàng)的和均等于首末兩項(xiàng)的和,從而為順利地推導(dǎo)求和公式鋪平了道路 ????在例題、習(xí)題的表述方面,適當(dāng)配備了一些采用疑問(wèn)形式的題,以增加問(wèn)題的啟發(fā)成分如3.3 例4:“已知數(shù)列的通項(xiàng)公式為=pn十q,其中p、q是常數(shù),那么這種數(shù)列是否一
8、定是等差數(shù)列? 如果是,其首項(xiàng)與公差是什么?” 又如:“如果一個(gè)數(shù)列既是等差數(shù)列,又是等比數(shù)列,那么這個(gè)數(shù)列有什么特點(diǎn)?”這樣就增加了題目的研究性在講有些例題時(shí),加了一小段“分析”,通過(guò)不多的幾句話點(diǎn)明解題的思路如對(duì)于上面提到的“3.3 例 4”,加的一段“分析”是:“由等差數(shù)列定義,要判定 {}是不是等差數(shù)列,只要看? 是不是一個(gè)與n無(wú)關(guān)的常數(shù)就行了”話雖不多,但突出了 “從定義出發(fā)”這種最基本的證明方法 ????(二)加強(qiáng)了知識(shí)的應(yīng)用 ????除了上面提到的“研究性課題”多具有應(yīng)用性的特點(diǎn)以外還在教材中適當(dāng)增加了一些應(yīng)用問(wèn)題如在“閱讀材料”里介紹了有關(guān)儲(chǔ)蓄的一些計(jì)算;在所增加的應(yīng)用問(wèn)題
9、里還涉及房屋拆建規(guī)劃、繞在圓盤(pán)上的線的長(zhǎng)度等 ????(三)呼應(yīng)前面的邏輯知識(shí),加強(qiáng)了推理論證的訓(xùn)練 ????考慮到《新大綱》更加重視對(duì)學(xué)生邏輯思維能力的培養(yǎng),且在前面第一章已介紹了“簡(jiǎn)易邏輯”,為進(jìn)行推理論證作了準(zhǔn)備,緊接著又在第二章“函數(shù)”里進(jìn)行了一定的推理論證訓(xùn)練,因此本草在推理論證方面有所加強(qiáng)???? (四)注意滲透一些重要的數(shù)學(xué)思想方法 ????由于本章處在知識(shí)交匯點(diǎn)的地位,所蘊(yùn)含的數(shù)學(xué)思想方法較為豐富,教材在這方面也力求充分挖掘教材注意從函數(shù)的觀點(diǎn)去看數(shù)列,在這種整體的、動(dòng)態(tài)的觀點(diǎn)之下使數(shù)列的一些性質(zhì)顯現(xiàn)得更加清楚,某些問(wèn)題也能得到更好的解決,例如“復(fù)習(xí)參考題B組第2題”便
10、是一個(gè)典型例子方程或方程組的思想也是體現(xiàn)得較為充分的,不少的例、習(xí)題均屬這種模式:已知數(shù)列滿足某某條件,求這個(gè)數(shù)列這類(lèi)問(wèn)題一般都要通過(guò)列出方程或方程組.然后求解關(guān)于遞推的思想方法,不僅在數(shù)列的遞推公式里有所體現(xiàn)觀察、歸納、猜想、證明等思想方法的組合運(yùn)用在本章里得到了充分展示.為學(xué)生了解它們各自的作用、相互間的關(guān)系并進(jìn)行初步運(yùn)用提供了條件 三、教學(xué)中應(yīng)注意的幾個(gè)問(wèn)題 ????(一)把握好本章的教學(xué)要求 ????由于本章聯(lián)系的知識(shí)面廣,具有知識(shí)交匯點(diǎn)的特點(diǎn),在應(yīng)試教育的“一步到位”的教育思想的影響下,本章的教學(xué)要求很容易拔高,過(guò)早地進(jìn)行針對(duì)“高考” 的綜合性訓(xùn)練,從而影響了基本內(nèi)容的學(xué)習(xí)和
11、加重了學(xué)生負(fù)擔(dān)事實(shí)上,學(xué)習(xí)是一個(gè)不斷深化的過(guò)程作為在高一(上)學(xué)習(xí)的這一章,應(yīng)致力于打好基礎(chǔ)并進(jìn)行初步的綜合訓(xùn)練,在后續(xù)的學(xué)習(xí)中通過(guò)對(duì)本章內(nèi)容的不斷應(yīng)用來(lái)獲得鞏固和提高最后在高三數(shù)學(xué)總復(fù)習(xí)時(shí),通過(guò)知識(shí)的系統(tǒng)梳理和進(jìn)一步的綜合訓(xùn)練使對(duì)本章內(nèi)容的掌握上升到一個(gè)新的檔次為此,本章教學(xué)中應(yīng)特別注意一些容易膨脹的地方例如在學(xué)習(xí)數(shù)列的遞推公式時(shí),不要去搞涉及遞推公式變形的論證、計(jì)算問(wèn)題,只要會(huì)根據(jù)遞推公式求出數(shù)列的前幾項(xiàng)就行了;在研究數(shù)列求和問(wèn)題時(shí),不要涉及過(guò)多的技巧. ????(二)有意識(shí)地復(fù)習(xí)和深化初中所學(xué)內(nèi)容 ????對(duì)于初中學(xué)過(guò)的多數(shù)知識(shí).在高中沒(méi)有系統(tǒng)深入學(xué)習(xí)的機(jī)會(huì)而初中內(nèi)容是學(xué)習(xí)高中數(shù)學(xué)的
12、必要基礎(chǔ),因而在學(xué)習(xí)高中內(nèi)容時(shí)有意識(shí)地復(fù)習(xí)、深化初中內(nèi)容顯得特別重要本章是高中數(shù)學(xué)的第三章,距離初中數(shù)學(xué)較近,與初中數(shù)學(xué)的聯(lián)系最廣,因而教學(xué)中應(yīng)在溝通初、高中數(shù)學(xué)方面盡可能多地作一些努力???? (三)適當(dāng)加強(qiáng)本章內(nèi)容與函數(shù)的聯(lián)系 ????適當(dāng)加強(qiáng)這種聯(lián)系,不僅有利于知識(shí)的融匯貫通,加深對(duì)數(shù)列的理解,運(yùn)用函數(shù)的觀點(diǎn)和方法解決有關(guān)數(shù)列的問(wèn)題,而且反過(guò)來(lái)可使學(xué)生對(duì)函數(shù)的認(rèn)識(shí)深化一步比如,學(xué)生在此之前接觸的函數(shù)一般是自變量連續(xù)變化的函數(shù),而到本章接觸到數(shù)列這種自變量離散變化的函數(shù)之后,就能進(jìn)一步理解函數(shù)的一般定義,防止了前面內(nèi)容安排可能產(chǎn)生的學(xué)生認(rèn)識(shí)上的負(fù)遷移; ????本章內(nèi)容與函數(shù)的聯(lián)系涉
13、及以下幾個(gè)方面 ????1.?dāng)?shù)列概念與函數(shù)概念的聯(lián)系 ????相應(yīng)于數(shù)列的函數(shù)是一種定義域?yàn)檎麛?shù)集(或它的前n個(gè)數(shù)組成的有限子集)的函數(shù),它是一種自變量“等距離”地離散取值的函數(shù)從這個(gè)意義上看,它豐富了學(xué)生所接觸的函數(shù)概念的范圍但數(shù)列與函數(shù)并不能劃等號(hào),數(shù)列是相應(yīng)函數(shù)的一系列函數(shù)值基于以上聯(lián)系,數(shù)列也可用圖象表示,從而可利用圖象的直觀性來(lái)研究數(shù)列的性質(zhì)數(shù)列的通項(xiàng)公式實(shí)際上是相應(yīng)因數(shù)的解析表達(dá)式而數(shù)列的遞推公式也是表示相應(yīng)函數(shù)的一種方式,因?yàn)橹灰o定一個(gè)自變量的值n,就可以通過(guò)遞推公式確定相應(yīng)的f(n)這也反過(guò)來(lái)說(shuō)明作為一個(gè)函數(shù)并不一定存在直接表示因變量與自變量關(guān)系的解析式 ???? 2
14、.等差數(shù)列與一次函數(shù)、二次函數(shù)的聯(lián)系 ????從等差數(shù)列的通項(xiàng)公式可以知道,公差不為零的等差數(shù)列的每一項(xiàng)a是關(guān)于項(xiàng)數(shù)n的一次函數(shù)式于是可以利用一次函數(shù)的性質(zhì)來(lái)認(rèn)識(shí)等差數(shù)列例如,根據(jù)一次函數(shù)的圖象是一條直線和直線由兩個(gè)點(diǎn)唯一確定的性質(zhì),就容易理解為什么兩項(xiàng)可以確定一個(gè)等差數(shù)列 ???此外,首項(xiàng)為、公差為d的等差數(shù)列前n項(xiàng)和的公式可以寫(xiě)為: ????即當(dāng)時(shí),是n的二次函數(shù)式,于是可以運(yùn)用二次函數(shù)的觀點(diǎn)和方法來(lái)認(rèn)識(shí)求等差數(shù)列前n項(xiàng)和的問(wèn)題如可以根據(jù)二次函數(shù)的圖象了解的增減變化、極值等情況 ????3.等比數(shù)列與指數(shù)型函數(shù)的聯(lián)系 ????由于首項(xiàng)為、公比為q的等比數(shù)列的通項(xiàng)公式可以寫(xiě)成
15、 它與指數(shù)函數(shù)y=有著密切聯(lián)系,從而可利用指數(shù)函數(shù)的性質(zhì)來(lái)研究等比數(shù)列 ????(四)注意等差數(shù)列與等比數(shù)列的對(duì)比,突出兩類(lèi)數(shù)列的基本特征 ????等差數(shù)列與等比數(shù)列在內(nèi)容上是完全平行的,包括:定義、性質(zhì)(等差還是等比)、通項(xiàng)公式、前n項(xiàng)和的公式、兩個(gè)數(shù)的等差(等比)中項(xiàng)具體問(wèn)題里成等差(等比)數(shù)列的三個(gè)數(shù)的設(shè)法等因此在教學(xué)與復(fù)習(xí)時(shí)可采用對(duì)比方法,以便于弄清它們之間的聯(lián)系與區(qū)別順便指出,一個(gè)數(shù)列既是等差數(shù)列又是等比數(shù)列的充要條件是它是非零的常數(shù)列 ????教學(xué)中應(yīng)強(qiáng)調(diào),等差數(shù)列的基本性質(zhì)是“等差”,等比數(shù)列的基本性質(zhì)是“等比”,這是我們研究有關(guān)兩類(lèi)數(shù)列的主要出發(fā)點(diǎn),是判斷、證明
16、一個(gè)數(shù)列是否為等差 (等比)數(shù)列和解決其他問(wèn)題的一種基本方法要讓學(xué)生注意,這里的“等差”(“等比”),是對(duì)任意相鄰兩項(xiàng)來(lái)說(shuō)的 ????上述基本性質(zhì),引申出兩類(lèi)數(shù)列的一種對(duì)稱性:即與數(shù)列中的任一項(xiàng)“等距離”的兩項(xiàng)之和(之積)等于該項(xiàng)的2倍(平方). ????利用上述性質(zhì),常使一些問(wèn)題變得簡(jiǎn)便對(duì)于學(xué)有余力的學(xué)生,還可指出等差數(shù)列與等比數(shù)列描述了兩種最簡(jiǎn)單、最重要的變化:等差數(shù)列描述的是一種絕對(duì)均勻變化,等比數(shù)列描述的是一種相對(duì)均勻變化非均勻變化通常要轉(zhuǎn)化或近似成均勻變化來(lái)進(jìn)行研究,這就成為教材之所以重點(diǎn)研究等差數(shù)列與等比數(shù)列的主要原因所在 ????(五)注意培養(yǎng)學(xué)生初步綜合運(yùn)用觀察、歸納、
17、猜想、證明等方法的能力 ????綜合運(yùn)用觀察、歸納、猜想、證明等方法研究數(shù)學(xué),是一種非常重要的學(xué)習(xí)能力事實(shí)上,在問(wèn)題探索求解中,常常是先從觀察入手,發(fā)現(xiàn)問(wèn)題的特點(diǎn),形成解決問(wèn)題的初步思路;然后用歸納方法進(jìn)行試探,提出猜想;最后采用證明方法(或舉反例)來(lái)檢驗(yàn)所提出的猜想應(yīng)該指出,能夠充分進(jìn)行上述研究方法訓(xùn)練的素材在高中數(shù)學(xué)里并非很多,而在本章里卻多次提供了這種訓(xùn)練機(jī)會(huì),因而在教學(xué)中應(yīng)該充分利用,不要輕易放過(guò) ????(六)在符號(hào)使用上與國(guó)家標(biāo)準(zhǔn)一致 ????為便于與國(guó)際交流,關(guān)于量和單位的新國(guó)家標(biāo)準(zhǔn)中規(guī)定自然數(shù)集N={0, l,2.3,……},即自然數(shù)從O開(kāi)始這與長(zhǎng)期以來(lái)的習(xí)慣用法不同,會(huì)使我們感到別扭但為了不與上述規(guī)定抵觸,教學(xué)中還是要將過(guò)去的習(xí)慣用法改變過(guò)來(lái),稱數(shù)集{1,2,3,…}為正整數(shù)集.
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 隱蔽工程驗(yàn)收要點(diǎn)
- 給排水中水泵揚(yáng)程與壓力的關(guān)系
- 水泥廠燒成回轉(zhuǎn)窯中控操作問(wèn)題解答
- 地暖安裝注意事項(xiàng)
- 水泥廠中控操作自動(dòng)化專業(yè)試題(附答案)
- 防水套管的應(yīng)用與分類(lèi)
- 施工現(xiàn)場(chǎng)職業(yè)健康管理制度
- 常見(jiàn)基坑工程的支護(hù)方式
- 水泥包裝車(chē)間各崗位職責(zé)
- 打樁機(jī)的種類(lèi)
- 水泥磨操作員試題(附答案)
- 鋼結(jié)構(gòu)工程量計(jì)算注意事項(xiàng)
- 水泥控制工試題(附答案)
- 水泥生產(chǎn)工藝類(lèi)知識(shí)考試題(附答案)-
- 鋼結(jié)構(gòu)安裝施工安全技術(shù)交底范文