2022年高考數(shù)學一輪復習 第一部分 基礎與考點過關(guān) 幾何證明選講學案 選修4-1

上傳人:xt****7 文檔編號:105963216 上傳時間:2022-06-13 格式:DOC 頁數(shù):11 大小:357.50KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學一輪復習 第一部分 基礎與考點過關(guān) 幾何證明選講學案 選修4-1_第1頁
第1頁 / 共11頁
2022年高考數(shù)學一輪復習 第一部分 基礎與考點過關(guān) 幾何證明選講學案 選修4-1_第2頁
第2頁 / 共11頁
2022年高考數(shù)學一輪復習 第一部分 基礎與考點過關(guān) 幾何證明選講學案 選修4-1_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學一輪復習 第一部分 基礎與考點過關(guān) 幾何證明選講學案 選修4-1》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學一輪復習 第一部分 基礎與考點過關(guān) 幾何證明選講學案 選修4-1(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學一輪復習 第一部分 基礎與考點過關(guān) 幾何證明選講學案 選修4-1 第1課時 圓的進一步認識 掌握圓的切線的判定定理和性質(zhì)定理,弦切角定理,割線定理,切割線定理和圓內(nèi)接四邊形的判定定理與性質(zhì)定理,能用這些定理解決有關(guān)圓的問題. ① 理解圓的切線的判定定理和性質(zhì)定理,圓周角定理,弦切角定理,相交弦定理,割線定理,切割線定理和圓內(nèi)接四邊形的判定定理與性質(zhì)定理.② 能應用圓的切線的判定定理和性質(zhì)定理,圓周角定理,弦切角定理,相交弦定理,割線定理,切割線定理和圓內(nèi)接四邊形的判定定理與性質(zhì)定理解決與圓有關(guān)的問題.  1. 如圖,四邊形ABCD是圓O的內(nèi)接四邊形,已知∠BO

2、D=100°,求∠BCD.  解:由題設∠BAD=∠BOD=50°, 則∠BCD=180°-∠BAD=130°. 2. 如圖,AB是圓O的直徑,MN與圓O相切于點C,AC=BC,求sin∠MCA的值.  解:由弦切角定理得,∠MCA=∠ABC, sin∠ABC====. 故sin∠MCA=. 3. 已知△ABC內(nèi)接于圓O,BE是圓O的直徑,AD是BC邊上的高.求證:BA·AC=BE·AD.  證明:連結(jié)AE. ∵ BE是圓O的直徑, ∴ ∠BAE=90°,∴ ∠BAE=∠ADC. ∵ ∠BEA=∠ACD,∴ Rt△BEA∽Rt△ACD. ∴ =,∴ BA·A

3、C=BE·AD. 4. 如圖,在圓O中,M,N是弦AB的三等分點,弦CD,CE分別經(jīng)過點M,N.若CM=2,MD=4,CN=3,求線段NE的長.  解:設AM=a,由相交弦定理可知,CM·MD=AM·MB,CN·NE=AN·NB,即2×4=a×2a,3×NE=2a×a,消去a解得NE=. 5. 如圖,EA與圓O相切于點A,D是EA的中點,過點D引圓O的割線,與圓O相交于點B,C,連結(jié)EC.求證:∠DEB=∠DCE.  證明:∵ EA與圓O相切于點A, 由切割線定理得DA2=DB·DC. ∵ D是EA的中點,∴ DA=DE. ∴ DE2=DB·DC.∴ =.∵ ∠EDB=∠

4、CDE, ∴ △EDB∽△CDE,∴ ∠DEB=∠DCE.  1. 圓周角定理 (1) 圓周角定理:圓周角的度數(shù)等于其所對弧的度數(shù)的一半. (2) 推論1:同?。ɑ虻然。┧鶎Φ膱A周角相等.同圓或等圓中,相等的圓周角所對的弧相等. (3) 推論2:半圓(或直徑)所對的圓周角等于90°.反之,90°的圓周角所對的弧為半圓(或弦為直徑). 2. 圓的切線 (1) 圓的切線的性質(zhì)與判定 ① 相關(guān)定義:當直線與圓有2個公共點時,直線與圓相交;當直線與圓有且只有1個公共點時,直線與圓相切,此時直線是圓的切線,公共點稱為切點;當直線與圓沒有公共點時,直線與圓相離. ② 切線的判定定理:

5、過半徑外端且與這條半徑垂直的直線是圓的切線. ③ 切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑. ④ 切線長定理:從圓外一點引圓的兩條切線,切線長相等. (2) 弦切角 ① 定義:頂點在圓上,一邊與圓相切,另一邊與圓相交的角稱為弦切角. ② 弦切角定理:弦切角的度數(shù)等于其所夾弧的度數(shù)的一半. ③ 推論:同弧(或等?。┥系南仪薪窍嗟龋。ɑ虻然。┥系南仪薪桥c圓周角相等. 3. 相交弦定理 相交弦定理:圓的兩條相交弦,每條弦被交點分成的兩條線段長的積相等. 4. 切割線定理 (1) 割線定理:從圓外一點引圓的兩條割線,該點到每條割線與圓的交點的兩條線段長的積相等. (2)

6、切割線定理:從圓外一點引圓的一條割線與一條切線,切線長是這點到割線與圓的兩個交點的線段長的等比中項. 5. 圓內(nèi)接四邊形 (1) 圓內(nèi)接四邊形性質(zhì)定理:圓內(nèi)接四邊形的對角互補. (2) 圓內(nèi)接四邊形判定定理:如果四邊形的對角互補,則此四邊形內(nèi)接于圓.[備課札記]   ,         1 圓周角與弦切角定理及應用) ,     1) (2017·蘇錫常鎮(zhèn)一模)如圖,圓O的直徑AB=6,C為圓上一點,BC=3,過點C作圓的切線l,過點A作l的垂線AD,AD分別與直線l、圓交于點D,E.求∠DAC的大小與線段AE的長.  解:如圖,連結(jié)OC,BE,  因為BC=

7、OB=OC=3, 所以∠CBO=60°. 因為∠DCA=∠CBO, 所以∠DCA=60°. 又AD⊥DC得∠DAC=30°. 因為∠ACB=90°,得∠CAB=30°, 所以∠EAB=60°,從而∠ABE=30°, 所以AE=AB=3. 變式訓練 如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.求證:∠DAP=∠BAP.  證明:∵ CP與圓O 相切,∴ ∠DPA=∠PBA. ∵ AB為圓O的直徑,∴ ∠APB=90°, ∴ ∠BAP=90°-∠PBA. ∵ AD⊥CP,∴ ∠DAP=90°-∠DPA, ∴ ∠DAP=∠BA

8、P. ,         2 圓的切線的判定與性質(zhì)) ,     2) 如圖,∠PAQ是直角,圓O與射線AP相切于點T,與射線AQ相交于B,C兩點.求證:BT平分∠OBA.  ∵ AT是切線,∴ OT⊥AP. ∵ ∠PAQ是直角,即AQ⊥AP,∴ AB∥OT, ∴ ∠TBA=∠BTO. 又OT=OB,∴ ∠OTB=∠OBT, ∴ ∠OBT=∠TBA,即BT平分∠OBA. 如圖,AC切圓O于D,AO的延長線交圓O于B,BC切圓O于B,若AD∶AC=1∶2,求的值.   ∵ AD∶AC=1∶2,∴ D為AC的中點. 又AC切圓O于D,∴ OD⊥AC.∴OA=

9、OC. ∴ △AOD≌△COD,∴ ∠1=∠2. 又△OBC≌△ODC,∴ ∠3=∠2. ∴ ∠1=∠2=∠3=60°,∴ OC=2OB. ∴ OA=2OB,即=2. ,         3 圓內(nèi)接四邊形的判定與性質(zhì)) ,     3)?。?017·南通、揚州、泰州模擬)如圖,已知AB為圓O的一條弦,點P為弧AB的中點,過點P任作兩條弦PC,PD,分別交AB于點E,F(xiàn).求證:PE·PC=PF·PD.   因為∠PAB=∠PCB,點P為弧AB的中點, 所以∠PAB=∠PBA, 所以∠PCB=∠PBA. 又∠DCB=∠DPB, 所以∠PFE=∠PBA+∠DPB=∠

10、PCB+∠DCB=∠PCD, 所以E,F(xiàn),D,C四點共圓. 所以PE·PC=PF·PD. 如圖,已知AP是圓O的切線,P為切點,AC是圓O的割線,與圓O交于B,C兩點,圓心O在∠PAC的內(nèi)部,點M是BC的中點. (1) 求證:A,P,O,M四點共圓; (2) 求∠OAM+∠APM的大小.   (1) 證明:連結(jié)OP,OM, 因為AP與圓O相切于點P, 所以OP⊥AP. 因為M是圓O的弦BC的中點,所以OM⊥BC, 于是∠OPA+∠OMA=180°. 由圓心O在∠PAC的內(nèi)部,可知四邊形APOM的對角互補, 所以A,P,O,M四點共圓. (2) 解:由(

11、1)得A,P,O,M四點共圓, 所以∠OAM=∠OPM. 因為AP是圓O的切線,P為切點,所以OP⊥AP, 所以∠OPM+∠APM=90°, 所以∠OAM+∠APM=90°. ,         4 相交弦定理、割線定理及切割線定理的應用) ,     4)?。?017·蘇州暑期檢測)如圖,△ABC是圓O的內(nèi)接三角形,PA是圓O的切線,A為切點,PB交AC于點E,交圓O于點D,若PE=PA,∠ABC=60°,且PD=1,PB=9,求EC.  解:∵ 弦切角∠PAE=∠ABC=60°,又PA=PE,∴ △PAE為等邊三角形.由切割線定理有PA2=PD·PB=9, ∴ AE

12、=EP=PA=3,ED=EP-PD=2,EB=PB-PE=6, 由相交弦定理有EC·EA=EB·ED=12, ∴ EC=12÷3=4. 變式訓練 (2017·南京、鹽城期末)如圖,AB是半圓O的直徑,點P為半圓O外一點,PA,PB分別交半圓O于點D,C.若AD=2,PD=4,PC=3,求BD的長.  解:由割線定理得PD·PA=PC·PB, 則4×(2+4)=3×(3+BC),解得BC=5. 又AB是半圓O的直徑,故∠ADB=. 則在Rt△PDB中有BD===4.  1. (2017·蘇州期末)如圖,點E是圓O內(nèi)兩條弦AB和CD的交點,過AD延長線上一點F作圓O的切

13、線FG,G為切點,已知EF=FG.求證:EF∥CB.  證明:由切割線定理得FG2=FA·FD. 又EF=FG,所以EF2=FA·FD,即=. 因為∠EFA=∠DFE,所以△DEF∽△EAF, 所以∠FED=∠FAE. 因為∠FAE=∠DAB=∠DCB,所以∠FED=∠BCD, 所以EF∥CB. 2. 如圖所示,△ABC是圓O的內(nèi)接三角形,且AB=AC,AP∥BC,弦CE的延長線交AP于點D.求證:AD2=DE·DC.  證明:連結(jié)AE,則∠AED=∠B. ∵ AB=AC,∴ ∠ACB=∠B,∴ ∠ACB=∠AED. ∵ AP∥BC,∴ ∠ACB=∠CAD, ∴

14、∠CAD=∠AED. 又∠ADC=∠EDA,∴ △ACD∽△EAD. ∴ =,即AD2=DE·DC.  3. (2017·南京、鹽城模擬)△ABC的頂點A,C在圓O上,B在圓O外,線段AB與圓O交于點M. (1) 如圖①,若BC是圓O的切線,且AB=8,BC=4,求線段AM的長; (2) 如圖②,若線段BC與圓O交于另一點N,且AB=2AC,求證:BN=2MN.  (1) 解:因為BC是圓O的切線,故由切割線定理得BC2=BM·BA. 設AM=t,因為AB=8,BC=4, 所以42=8(8-t),解得t=6,即線段AM的長度為6. (2) 證明:因為四邊形AMNC為

15、圓內(nèi)接四邊形, 所以∠A=∠MNB. 又∠B=∠B,所以△BMN∽△BCA, 所以=. 因為AB=2AC,所以BN=2MN. 4. (2017·常州期末)如圖,過圓O外一點P作圓O的切線PA,切點為A,連結(jié)OP與圓O交于點C,過點C作AP的垂線,垂足為D.若PA=2,PC∶PO=1∶3,求CD的長.   解:延長PO交圓O于點B,連結(jié)OA. 設PC=x(x>0), 則由PC∶PO=1∶3, 得PO=3x,則PB=5x. 因為PA是圓O的切線, 所以PA2=PC·PB,即(2)2=x·(5x),解得x=2. 故OA=OC=4. 因為PA是圓O的切線,所以OA⊥P

16、A. 又CD⊥PA,則OA∥CD,因此==. 又OA=4,所以CD=.  1. (2017·蘇北四市期末)如圖,AB為半圓O的直徑,點D為弧BC的中點,點E為BC的中點.求證:AB·BC=2AD·BD.  證明:因為D為弧BC的中點, 所以∠DBC=∠DAB,DC=DB. 因為AB為半圓O的直徑,所以∠ADB=90°. 又E為BC的中點,所以EC=EB,所以DE⊥BC, 所以△ABD∽△BDE. 所以==,所以AB·BC=2AD·BD.  2. 如圖,AB為圓O的切線,A為切點,C為線段AB的中點,過C作圓O的割線CED,求證:∠CBE=∠BDE. 證明:因為

17、CA為圓O的切線, 所以CA2=CE·CD. 又CA=CB,所以CB2=CE·CD,即=. 又∠ECB=∠BCD, 所以△BCE∽△DCB, 所以∠CBE=∠BDE. 3. 如圖,AB是圓O的直徑,弦BD,CA的延長線相交于點E,EF垂直于BA,交BA的延長線于點F. 求證: (1) ∠DEA=∠DFA; (2) AB2=BE·BD-AE·AC.  證明:(1) 連結(jié)AD,因為AB為圓O的直徑, 所以∠ADB=90°. 又EF⊥AB,∠EFA=90°, 所以A,D,E,F(xiàn)四點共圓. 所以∠DEA=∠DFA. (2) 由(1)知,BD·BE=BA·BF, 連結(jié)

18、BC.又△ABC∽△AEF, ∴ =,即AB·AF=AE·AC. ∴ BE·BD-AE·AC=BA·BF-AB·AF=AB(BF-AF)=AB2. 4. 如圖,直線AB與圓O相切于點B,直線AO交圓O于D,E兩點,BC⊥DE,垂足為C,且AD=3DC,BC=,求圓O的直徑.  解:因為DE是圓O的直徑,則∠BED+∠EDB=90°. 又BC⊥DE,所以∠CBD+∠EDB=90°. 又AB切圓O于點B,得∠ABD=∠BED, 所以∠CBD=∠DBA. 即BD平分∠CBA,則==3. 又BC=,從而AB=3,所以AC==4, 所以AD=3. 由切割線定理得AB2=AD·AE,即AE==6, 故DE=AE-AD=3,即圓O的直徑為3.  與圓有關(guān)的輔助線的五種作法 (1) 有弦,作弦心距; (2) 有直徑,作直徑所對的圓周角; (3) 有切點,作過切點的半徑; (4) 兩圓相交,作公共弦; (5) 兩圓相切,作公切線.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!