《2022高考數(shù)學(xué) 考點(diǎn)突破——概率:隨機(jī)事件的概率學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué) 考點(diǎn)突破——概率:隨機(jī)事件的概率學(xué)案(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022高考數(shù)學(xué) 考點(diǎn)突破——概率:隨機(jī)事件的概率學(xué)案
【考點(diǎn)梳理】
1.概率和頻率
(1)在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率.
(2)對于給定的隨機(jī)事件A,由于事件A發(fā)生的頻率fn(A)隨著試驗(yàn)次數(shù)的增加穩(wěn)定于概率P(A),因此可以用頻率fn(A)來估計(jì)概率P(A).
2.事件的關(guān)系與運(yùn)算
定義
符號表示
包含關(guān)系
若事件A發(fā)生,則事件B一定發(fā)生,這時(shí)稱事件B包含事件A(或稱事件A包含于事件B)
B?A
(或A?B)
相等關(guān)系
若B?A,且A?
2、B,那么稱事件A與事件B相等
A=B
并事件
(和事件)
若某事件發(fā)生當(dāng)且僅當(dāng)事件A發(fā)生或事件B發(fā)生,則稱此事件為事件A與事件B的并事件(或和事件)
A∪B
(或A+B)
交事件
(積事件)
若某事件發(fā)生當(dāng)且僅當(dāng)事件A發(fā)生且事件B發(fā)生,則稱此事件為事件A與事件B的交事件(或積事件)
A∩B
(或AB)
互斥事件
若A∩B為不可能事件,那么稱事件A與事件B互斥
A∩B=?
對立事件
若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件
A∩B=?
且A∪B=Ω
3.概率的幾個(gè)基本性質(zhì)
(1)概率的取值范圍:0≤P(A)≤1.
(2)必
3、然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)互斥事件概率的加法公式.
①如果事件A與事件B互斥,則P(A∪B)=P(A)+P(B);
②若事件B與事件A互為對立事件,則P(A)=1-P(B).
【考點(diǎn)突破】
考點(diǎn)一、隨機(jī)事件間的關(guān)系
【例1】(1)從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取2個(gè)球,那么互斥而不對立的兩個(gè)事件是( )
A.“至少有一個(gè)黑球”與“都是黑球”
B.“至少有一個(gè)黑球”與“都是紅球”
C.“至少有一個(gè)黑球”與“至少有一個(gè)紅球”
D.“恰有一個(gè)黑球”與“恰有兩個(gè)黑球”
(2)從1,2,3,4,5這五個(gè)數(shù)中任取兩個(gè)數(shù),其中:①恰
4、有一個(gè)是偶數(shù)和恰有一個(gè)是奇數(shù);②至少有一個(gè)是奇數(shù)和兩個(gè)都是奇數(shù);③至少有一個(gè)是奇數(shù)和兩個(gè)都是偶數(shù);④至少有一個(gè)是奇數(shù)和至少有一個(gè)是偶數(shù).上述事件中,是對立事件的是( )
A.① B.②④
C.③ D.①③
[答案] (1) D (2) C
[解析] (1)A中的兩個(gè)事件是包含關(guān)系,不是互斥事件;B中的兩個(gè)事件是對立事件;C中的兩個(gè)事件都包含“一個(gè)黑球一個(gè)紅球”的事件,不是互斥關(guān)系;D中的兩個(gè)事件是互斥而不對立的關(guān)系.
(2)從1,2,3,4,5這五個(gè)數(shù)中任取兩個(gè)數(shù)有3種情況:一奇一偶,兩個(gè)奇數(shù),兩個(gè)偶數(shù),其中“至少有一個(gè)是奇數(shù)”包含一奇一偶或兩個(gè)奇數(shù)這兩種情況
5、,它與兩個(gè)都是偶數(shù)是對立事件.
又①②④中的事件可以同時(shí)發(fā)生,不是對立事件.
【類題通法】
1.準(zhǔn)確把握互斥事件與對立事件的概念
(1)互斥事件是不可能同時(shí)發(fā)生的事件,但也可以同時(shí)不發(fā)生.
(2)對立事件是特殊的互斥事件,特殊在對立的兩個(gè)事件不可能都不發(fā)生,即有且僅有一個(gè)發(fā)生.
2.判別互斥、對立事件的方法
判別互斥事件、對立事件一般用定義判斷,不可能同時(shí)發(fā)生的兩個(gè)事件為互斥事件;兩個(gè)事件,若有且僅有一個(gè)發(fā)生,則這兩個(gè)事件為對立事件,對立事件一定是互斥事件.
【對點(diǎn)訓(xùn)練】
1.把紅、黑、藍(lán)、白4張紙牌隨機(jī)地分發(fā)給甲、乙、丙、丁四個(gè)人,每人分得1張,事件“甲分得紅牌”與事件“乙
6、分得紅牌”是( )
A.對立事件
B.不可能事件
C.互斥事件但不是對立事件
D.以上答案都不對
[答案] C
[解析] 由互斥事件和對立事件的概念可判斷,應(yīng)選C.
2.袋中裝有3個(gè)白球和4個(gè)黑球,從中任取3個(gè)球,則:①恰有1個(gè)白球和全是白球;②至少有1個(gè)白球和全是黑球;③至少有1個(gè)白球和至少有2個(gè)白球;④至少有1個(gè)白球和至少有1個(gè)黑球.
在上述事件中,是對立事件的為( )
A.① B.② C.③ D.④
[答案] B
[解析] 至少有1個(gè)白球和全是黑球不同時(shí)發(fā)生,且一定有一個(gè)發(fā)生.故②中兩事件是對立事件.③④不是互斥事件,①是互斥事件,但不是對立
7、事件,因此是對立事件的只有②,選B.
考點(diǎn)二、隨機(jī)事件的頻率與概率
【例2】某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[3
8、5,40]
天數(shù)
2
16
36
25
7
4
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)估計(jì)六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.
[解析] (1)這種酸奶一天的需求量不超過300瓶,當(dāng)且僅當(dāng)最高氣溫低于25,
由表中數(shù)據(jù)可知,最高氣溫低于25的頻率為=0.6.
所以這種酸奶一天的需求量不超過300瓶的概率的估計(jì)值為0.6.
(2)當(dāng)這種酸奶一天的進(jìn)貨量為450瓶時(shí),
若最高氣溫低于20,則
9、Y=200×6+(450-200)×2-450×4=-100;
若最高氣溫位于區(qū)間[20,25),則Y=300×6+(450-300)×2-450×4=300;
若最高氣溫不低于25,則Y=450×(6-4)=900,
所以,利潤Y的所有可能值為-100,300,900.
Y大于零當(dāng)且僅當(dāng)最高氣溫不低于20,由表格數(shù)據(jù)知,最高氣溫不低于20的頻率為=0.8.
因此Y大于零的概率的估計(jì)值為0.8.
【類題通法】
1.概率與頻率的關(guān)系
頻率反映了一個(gè)隨機(jī)事件出現(xiàn)的頻繁程度,頻率是隨機(jī)的,而概率是一個(gè)確定的值,通常用概率來反映隨機(jī)事件發(fā)生的可能性的大小,有時(shí)也用頻率來作為隨機(jī)事件概率
10、的估計(jì)值.
2.隨機(jī)事件概率的求法
利用概率的統(tǒng)計(jì)定義求事件的概率,即通過大量的重復(fù)試驗(yàn),事件發(fā)生的頻率會逐步趨近于某一個(gè)常數(shù),這個(gè)常數(shù)就是概率.
【對點(diǎn)訓(xùn)練】
某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù)
0
1
2
3
4
≥5
?!≠M(fèi)
0.85a
a
1.25a
1.5a
1.75a
2a
隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:
出險(xiǎn)次數(shù)
0
1
2
3
4
≥5
頻數(shù)
60
50
30
30
20
10
11、
(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;
(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;
(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.
[解析] (1)事件A發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)小于2.由所給數(shù)據(jù)知,一年內(nèi)出險(xiǎn)次數(shù)小于2的頻率為=0.55,故P(A)的估計(jì)值為0.55.
(2)事件B發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于1且小于4.由所給數(shù)據(jù)知,一年內(nèi)出險(xiǎn)次數(shù)大于1且小于4的頻率為=0.3,故P(B)的估計(jì)值為0.3.
(3)由所給數(shù)據(jù)得
保費(fèi)
0.85a
a
1.25a
1.5a
12、1.75a
2a
頻率
0.30
0.25
0.15
0.15
0.10
0.05
調(diào)查的200名續(xù)保人的平均保費(fèi)為0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.
因此,續(xù)保人本年度平均保費(fèi)的估計(jì)值為1.192 5a.
考點(diǎn)三、互斥事件與對立事件的概率
【例3】某商場有獎(jiǎng)銷售中,購滿100元商品得1張獎(jiǎng)券,多購多得.1 000張獎(jiǎng)券為一個(gè)開獎(jiǎng)單位,設(shè)特等獎(jiǎng)1個(gè),一等獎(jiǎng)10個(gè),二等獎(jiǎng)50個(gè).設(shè)1張獎(jiǎng)券中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)的事件分別為A,B,C,求:
(1)P(A),P(B),P(
13、C);
(2)1張獎(jiǎng)券的中獎(jiǎng)概率;
(3)1張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)的概率.
[解析] (1)P(A)=,
P(B)==,
P(C)==.
故事件A,B,C的概率分別為,,.
(2)1張獎(jiǎng)券中獎(jiǎng)包含中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng).設(shè)“1張獎(jiǎng)券中獎(jiǎng)”這個(gè)事件為M,則M=A∪B∪C.
∵A,B,C兩兩互斥,
∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)
==,
故1張獎(jiǎng)券的中獎(jiǎng)概率約為.
(3)設(shè)“1張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)”為事件N,則事件N與“1張獎(jiǎng)券中特等獎(jiǎng)或中一等獎(jiǎng)”為對立事件,
∴P(N)=1-P(A∪B)=1-=,
故1張獎(jiǎng)券不中特等獎(jiǎng)且不
14、中一等獎(jiǎng)的概率為.
【類題通法】
1.求解本題的關(guān)鍵是正確判斷各事件的關(guān)系,以及把所求事件用已知概率的事件表示出來.
2.求復(fù)雜的互斥事件的概率一般有兩種方法:一是直接求解法,將所求事件的概率分解為一些彼此互斥的事件的概率再求和;二是間接法,先求該事件的對立事件的概率,再由P(A)=1-P()求解.當(dāng)題目涉及“至多”“至少”型問題,多考慮間接法.
【對點(diǎn)訓(xùn)練】
經(jīng)統(tǒng)計(jì),在某儲蓄所一個(gè)營業(yè)窗口等候的人數(shù)相應(yīng)的概率如下:
排隊(duì)人數(shù)
0
1
2
3
4
5人及5人以上
概率
0.1
0.16
0.3
0.3
0.1
0.04
求:(1)至多2人排隊(duì)等候的概率;
15、
(2)至少3人排隊(duì)等候的概率.
[解析] 記“無人排隊(duì)等候”為事件A,“1人排隊(duì)等候”為事件B,“2人排隊(duì)等候”為事件C,“3人排隊(duì)等候”為事件D,“4人排隊(duì)等候”為事件E,“5人及5人以上排隊(duì)等候”為事件F,則事件A,B,C,D,E,F(xiàn)彼此互斥.
(1)記“至多2人排隊(duì)等候”為事件G,則G=A∪B∪C,
所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)
=0.1+0.16+0.3=0.56.
(2)法一 記“至少3人排隊(duì)等候”為事件H,
則H=D∪E∪F,
所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.
法二 記“至少3人排隊(duì)等候”為事件H,則其對立事件為事件G,
所以P(H)=1-P(G)=0.44.