歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

【走向高考】2020年高考數(shù)學(xué)總復(fù)習(xí) 12-3 不等式選講課后作業(yè) 理 新人教A版

  • 資源ID:110522418       資源大?。?span id="djj3uoc" class="font-tahoma">116.50KB        全文頁數(shù):9頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

【走向高考】2020年高考數(shù)學(xué)總復(fù)習(xí) 12-3 不等式選講課后作業(yè) 理 新人教A版

"【走向高考】2020年高考數(shù)學(xué)總復(fù)習(xí) 12-3 不等式選講(理)課后作業(yè) 新人教A版 " 1.若不等式|ax+2|<4的解集為(-1,3),則實數(shù)a等于(  ) A.8    B.2    C.-4    D.-2 [答案] D [解析] 由-4<ax+2<4,得-6<ax<2. ∴(ax-2)(ax+6)<0,其解集為(-1,3),∴a=-2. [點評] 可用方程的根與不等式解集的關(guān)系求解. 2.(2020·山東理,4)不等式|x-5|+|x+3|≥10的解集是(  ) A.[-5,7]   B.[-4,6] C.(-∞,-5]∪[7,+∞)   D.(-∞,-4]∪[6,+∞) [答案] D [解析] 當(dāng)x≤-3時,|x-5|+|x+3|=5-x-x-3=2-2x≥10,即x≤-4,∴x≤-4. 當(dāng)-3<x<5時,|x-5|+|x+3|=5-x+x+3=8≥10,不成立,∴無解. 當(dāng)x≥5時,|x-5|+|x+3|=x-5+x+3=2x-2≥10,即x≥6,∴x≥6. 綜上可知,不等式的解集為(-∞,-4]∪[6,+∞),故選D. [點評] 可用特值檢驗法,首先x=0不是不等式的解,排除A、B;x=6是不等式的解,排除C,故選D. 3.(2020·延邊州質(zhì)檢)函數(shù)y=(x≥0)的最小值為(  ) A.6 B.7 C. D.9 [答案] B [解析] 原式變形為y= =x+2++1, 因為x≥0,所以x+2>0,所以x+2+≥6, 所以y≥7,當(dāng)且僅當(dāng)x=1時取等號, 所以ymin=7(當(dāng)且僅當(dāng)x=1時) 4.已知0<a<,且M=+,N=+,則M、N的大小關(guān)系是(  ) A.M<N B.M>N C.M=N D.不確定 [答案] B [解析] ∵0<a<,∴ab<1,a>0,b>0, ∴M-N=+ = =>0, ∴M>N. 5.設(shè)a、b、c為正數(shù),且a+2b+3c=13,則++的最大值為(  ) A. B. C. D. [答案] C [解析] (a+2b+3c)[()2+12+()2] ≥(++)2, ∵a+2b+2c=13, ∴(++)2≤, ∴++≤, 當(dāng)且僅當(dāng)==取等號, 又∵a+2b+2c=13,∴a=9,b=,c=時,++取最大值. 6.(2020·皖南八校聯(lián)考)不等式|x+3|+|x-1|≥a2-3a對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為(  ) A.[-1,4] B.(-∞,-2]∪[5,+∞) C.[-2,5] D.(-∞,-1]∪[4,+∞) [答案] A [解析] 由絕對值的幾何意義易知:|x+3|+|x-1|的最小值為4,所以不等式|x+3|+|x-1|≥a2-3a對任意實數(shù)x恒成立,只需a2-3a≤4,解得-1≤a≤4. 7.(2020·西安市八校聯(lián)考)如果關(guān)于x的不等式|x-3|-|x-4|<a的解集不是空集,則實數(shù)a的取值范圍是________. [答案] (-1,+∞) [解析] 設(shè)y=|x-3|-|x-4|,則 y=的圖象如圖所示: 由圖象可知-1≤y≤1, ∴當(dāng)a>-1時,不等式的解集不是空集. 8.(2020·江蘇)設(shè)a、b為非負(fù)實數(shù),求證: a3+b3≥(a2+b2). [解析] ∵a,b是非負(fù)實數(shù), ∴a3+b3-(a2+b2)=a2(-)+b2(-) =(-)(()5-()5). 當(dāng)a≥b時,≥,從而()5≥()5,得 (-)(()5-()5)≥0; 當(dāng)a<b時,<,從而()5<()5,得 (-)(()5-()5)>0. 所以a3+b3≥(a2+b2). 1.設(shè)m=a2b2+5,n=2ab-a2-4a,若m>n,則實數(shù)a,b滿足的條件是________. [答案] ab≠1或a≠-2 [解析] ∵m-n=a2b2+5-(2ab-a2-4a) =a2b2-2ab+1+a2+4a+4 =(ab-1)2+(a+2)2>0, ∴ab≠1或a≠-2. 2.(2020·開封市模擬)已知函數(shù)f(x)=|x-7|-|x-3|. (1)作出函數(shù)f(x)的圖象; (2)當(dāng)x<5時,不等式|x-8|-|x-a|>2恒成立,求a的取值范圍. [解析] (1)∵f(x)= 圖象如圖所示: (2)∵x<5,∴|x-8|-|x-a|>2,即8-x-|x-a|>2, 即|x-a|<6-x,對x<5恒成立. 即x-6<x-a<6-x對x<5恒成立, ∴對x<5恒成立. 又∵x<5時,2x-6<4,∴4≤a<6. ∴a的取值范圍為[4,6). 3.(2020·江蘇鹽城調(diào)研)設(shè)a、b、c、d都是正數(shù),且x=,y=. 求證:xy≥. [證明] ∵(a2+b2)(c2+d2)-(ac+bd)2=(ad-bc)2≥0,∴(a2+b2)(c2+d2)≥(ac+bd)2, 又a、b、c、d均為正數(shù), ∴·≥ac+bd>0① 同理·≥ad+bc>0② ①×②得:(a2+b2)(c2+d2) ≥(ac+bd)(ad+bc)>0, ∴≥, 即xy≥. 4.設(shè)a、b、c都是正數(shù),求證:++≥a+b+c. [分析] 三個正數(shù)a、b、c可排序,不妨設(shè)a≥b≥c>0,則0<≤≤,ab≥ac≥bc,再由排序原理證之. [證明] 不妨設(shè)a≥b≥c>0, ∴ab≥ac≥bc,≥≥. 由排序原理,知ab×+ac×+bc×≥ab×+ac×+bc×,即++≥a+b+c. 5.若a>0,b>0,求證:+≥a+b. [證明] 左邊-右邊=+-(+) =+=(a-b)· =≥0,∴左邊≥右邊. 即原不等式成立. 6.(2020·福建質(zhì)檢)已知a,b為正實數(shù). (1)求證:+≥a+b; (2)利用(1)的結(jié)論求函數(shù)y=+(0<x<1)的最小值. [解析] (1)證法一:∵a>0,b>0, ∴(a+b)(+)=a2+b2++ ≥a2+b2+2ab=(a+b)2. ∴+≥a+b,當(dāng)且僅當(dāng)a=b時等號成立. 證法二:∵+-(a+b)= == =. 又∵a>0,b>0,∴≥0, 當(dāng)且僅當(dāng)a=b時等號成立.∴+≥a+b. (2)解:∵0<x<1,∴1-x>0, 由(1)的結(jié)論,函數(shù)y=+≥(1-x)+x=1. 當(dāng)且僅當(dāng)1-x=x即x=時等號成立. ∴函數(shù)y=+(0<x<1)的最小值為1. 1.設(shè)a、b、c∈R,且a2+2b2+3c2=6,則a+b+c的最小值為(  ) A. B.- C.3 D.11 [答案] B [解析] (a+b+c)2=(a×1+b·+c·)2≤(a2+2b2+3c2)=11, ∴-≤a+b+c≤等號成立時,==, 即a=2b=3c,∴或 . 2.(2020·鄭州二檢)不等式|x+1|-|x-2|>k的解集為R,則實數(shù)k的取值范圍為________. [答案] (-∞,-3) [解析] 解法一:根據(jù)絕對值的幾何意義,設(shè)數(shù)x,-1,2在數(shù)軸上對應(yīng)的點分別為P、A、B,則原不等式等價于|PA|-|PB|>k恒成立.∵|AB|=3,∴-3≤P(A)-P(B)≤3,∴|x+1|-|x-2|的最小值為-3.故當(dāng)k<-3時,原不等式恒成立. 解法二:令y=|x+1|-|x-2|,則y=要使|x+1|-|x-2|>k恒成立,從圖象中可以看出,只要k<-3即可.故k<-3滿足題意. 3.(2020·湖南考試院調(diào)研)已知x、y、z∈R,x2+y2+z2=1,則x+2y+2z的最大值為________. [答案] 3 [解析] 由柯西不等式,x+2y+2z≤=3,等號在==,即x=,y=z=時成立. 4.已知a、b∈R+,且a+b=1,則+的最大值是________. [答案] 2 [解析] ∵a、b∈R+,a+b=1, ∴+ ≤=2. 當(dāng)且僅當(dāng)a=b=時取等號. 5.若a>0,b>0,則p=(ab) ,q=ab·ba的大小關(guān)系是________. [答案] p≥q [解析] ∵a>0,b>0,∴p=(ab)>0,q=ab·ba>0, ==a·b=. 若a>b,則>1,>0,∴>1; 若a<b,則0<<1,<0, ∴>1; 若a=b,則=1,=0,∴=1. ∴≥1,即≥1.∵q>0,∴p≥q. [點評] 可運用特值法,令a=1,b=1,則p=1,q=1,有p=q; 令a=2,b=4,有p=83=512,q=24×42=256,∴p>q,故填p≥q. 6.(2020·豫南九校聯(lián)考)若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則+≥,當(dāng)且僅當(dāng)=時上式取等號.利用以上結(jié)論,可以得到函數(shù)f(x)=+(x∈(0,))的最小值為________. [答案] 25 [解析] 依據(jù)給出的結(jié)論可知f(x)=+≥=25等號在=,即x=時成立. 7.(2020·課標(biāo)全國文,24)設(shè)函數(shù)f(x)=|x-a|+3x,其中a>0, (1)當(dāng)a=1時,求不等式f(x)≥3x+2的解集. (2)若不等式f(x)≤0的解集為{x|x≤-1},求a的值. [解析] (1)當(dāng)a=1時,f(x)≥3x+2可化為|x-1|≥2. 由此可得x≥3或x≤-1. 故不等式f(x)≥3x+2的解集為 {x|x≥3或x≤-1}. (2)由f(x)≤0得|x-a|+3x≤0. 此不等式化為不等式組或 即或因為a>0,所以x≤-, 所以原不等式的解集為{x|x≤-}. 由題設(shè)可得-=-1,故a=2.

注意事項

本文(【走向高考】2020年高考數(shù)學(xué)總復(fù)習(xí) 12-3 不等式選講課后作業(yè) 理 新人教A版)為本站會員(艷***)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!