《高中數(shù)學(xué) 第二章 第9講 函數(shù)模型及其應(yīng)用練習(xí) 理 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第二章 第9講 函數(shù)模型及其應(yīng)用練習(xí) 理 新人教A版(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第9講 函數(shù)模型及其應(yīng)用
基礎(chǔ)鞏固題組
(建議用時(shí):40分鐘)
一、選擇題
1.下表是函數(shù)值y隨自變量x變化的一組數(shù)據(jù),它最可能的函數(shù)模型是 ( )
x
4
5
6
7
8
9
10
y
15
17
19
21
23
25
27
A.一次函數(shù)模型 B.冪函數(shù)模型
C.指數(shù)函數(shù)模型 D.對(duì)數(shù)函數(shù)模型
2.(2020·合肥調(diào)研)某工廠6年來(lái)生產(chǎn)某種產(chǎn)品的情況是:前3年年產(chǎn)量的增長(zhǎng)速度越來(lái)越快,后3年年產(chǎn)量保持不變,則該廠6年來(lái)這種產(chǎn)品的總產(chǎn)量C與時(shí)間t(年)的函數(shù)關(guān)系圖象正確的是 ( )
3.(2020·北京東城期末)某企業(yè)投入1
2、00萬(wàn)元購(gòu)入一套設(shè)備,該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬(wàn)元,此外每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬(wàn)元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬(wàn)元.為使該設(shè)備年平均費(fèi)用最低,該企業(yè)需要更新設(shè)備的年數(shù)為 ( )
A.10 B.11
C.13 D.21
4.(2020·孝感模擬)物價(jià)上漲是當(dāng)前的主要話題,特別是菜價(jià),我國(guó)某部門(mén)為盡快實(shí)現(xiàn)穩(wěn)定菜價(jià),提出四種綠色運(yùn)輸方案.據(jù)預(yù)測(cè),這四種方案均能在規(guī)定的時(shí)間T內(nèi)完成預(yù)測(cè)的運(yùn)輸任務(wù)Q0,各種方案的運(yùn)輸總量Q與時(shí)間t的函數(shù)關(guān)系如圖所示,在這四種方案中,運(yùn)輸效率(單位時(shí)間的運(yùn)輸量)逐步提高的是 ( )
5.某電信公司推出兩種
3、手機(jī)收費(fèi)方式:A種方式是月租20元,B種方式是月租0元.一個(gè)月的本地網(wǎng)內(nèi)打出電話時(shí)間t(分鐘)與打出電話費(fèi)s(元)的函數(shù)關(guān)系如圖,當(dāng)打出電話150分鐘時(shí),這兩種方式電話費(fèi)相差 ( )
A.10元 B.20元
C.30元 D.元
二、填空題
6.(2020·江西六校聯(lián)考)A、B兩只船分別從在東西方向上相距145 km的甲乙兩地開(kāi)出.A從甲地自東向西行駛.B從乙地自北向南行駛,A的速度是40 kmh,B的速度是 16 kmh,經(jīng)過(guò)________小時(shí),AB間的距離最短.
7.(2020·長(zhǎng)春模擬)一個(gè)容器裝有細(xì)沙a cm3,細(xì)沙從容器底下一個(gè)細(xì)微的小孔慢慢地勻速漏出,t
4、 min 后剩余的細(xì)沙量為 y=ae-bt(cm3),經(jīng)過(guò) 8 min后發(fā)現(xiàn)容器內(nèi)還有一半的沙子,則再經(jīng)過(guò)________min,容器中的沙子只有開(kāi)始時(shí)的八分之一.
8.在如圖所示的銳角三角形空地中,欲建一個(gè)面積最大的內(nèi)接矩形花園(陰影部分),則其邊長(zhǎng)x為_(kāi)_______m.
三、解答題
9.(2020·鄭州模擬)某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本y(萬(wàn)元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可以近似地表示為y=-48x+8 000,已知此生產(chǎn)線年產(chǎn)量最大為210噸.
(1)求年產(chǎn)量為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若每噸產(chǎn)品平均出
5、廠價(jià)為40萬(wàn)元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
10.在扶貧活動(dòng)中,為了盡快脫貧(無(wú)債務(wù))致富,企業(yè)甲將經(jīng)營(yíng)狀況良好的某種消費(fèi)品專(zhuān)賣(mài)店以5.8萬(wàn)元的優(yōu)惠價(jià)格轉(zhuǎn)讓給了尚有5萬(wàn)元無(wú)息貸款沒(méi)有償還的小型企業(yè)乙,并約定從該店經(jīng)營(yíng)的利潤(rùn)中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開(kāi)支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中:①這種消費(fèi)品的進(jìn)價(jià)為每件14元;②該店月銷(xiāo)量Q(百件)與銷(xiāo)售價(jià)格P(元)的關(guān)系如圖所示;③每月需各種開(kāi)支2 000元.
(1)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)扣除職工最低生活費(fèi)的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店
6、,最早可望在幾年后脫貧?
能力提升題組
(建議用時(shí):25分鐘)
11.為了預(yù)防信息泄露,保證信息的安全傳輸,在傳輸過(guò)程中都需要對(duì)文件加密,有一種為加密密鑰密碼系統(tǒng)(Private Key Cryptosystem),其加密、解密原理為:發(fā)送方由明文→密文(加密),接收方由密文→明文(解密).現(xiàn)在加密密鑰為y=kx3,如“4”通過(guò)加密后得到密文“2”,若接受方接到密文“”,則解密后得到的明文是 ( )
A. B.
C.2 D.
12.某廠有許多形狀為直角梯形的鐵皮邊角料,如圖,為降低消耗,開(kāi)源節(jié)流,現(xiàn)要從這些邊角料上截取矩形鐵片(如圖中陰影部分)備用,當(dāng)截取的矩形面積最大時(shí),
7、矩形兩邊長(zhǎng)x,y應(yīng)為 ( )
A.x=15,y=12 B.x=12,y=15
C.x=14,y=10 D.x=10,y=14
13.一個(gè)工廠生產(chǎn)某種產(chǎn)品每年需要固定投資100萬(wàn)元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬(wàn)元,年產(chǎn)量為x(x∈N*)件.當(dāng)x≤ 20時(shí),年銷(xiāo)售總收入為(33x-x2)萬(wàn)元;當(dāng)x>20時(shí),年銷(xiāo)售總收入為260萬(wàn)元.記該工廠生產(chǎn)并銷(xiāo)售這種產(chǎn)品所得的年利潤(rùn)為y萬(wàn)元,則y(萬(wàn)元)與x(件)的函數(shù)關(guān)系式為_(kāi)_______,該工廠的年產(chǎn)量為_(kāi)_______件時(shí),所得年利潤(rùn)最大(年利潤(rùn)=年銷(xiāo)售總收入-年總投資).
14.已知某物體的溫度θ(單位:攝氏度)隨時(shí)間t(單位:分鐘)的變化規(guī)律:θ=m·2t+21-t(t≥0,并且m>0).
(1)如果m=2,求經(jīng)過(guò)多少時(shí)間,物體的溫度為5攝氏度;
(2)若物體的溫度總不低于2攝氏度,求m的取值范圍.