湖南省衡陽(yáng)市耒陽(yáng)市七年級(jí)數(shù)學(xué)上冊(cè) 第5章 相交線與平行線復(fù)習(xí)課件(新版)華東師大版.ppt
《湖南省衡陽(yáng)市耒陽(yáng)市七年級(jí)數(shù)學(xué)上冊(cè) 第5章 相交線與平行線復(fù)習(xí)課件(新版)華東師大版.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《湖南省衡陽(yáng)市耒陽(yáng)市七年級(jí)數(shù)學(xué)上冊(cè) 第5章 相交線與平行線復(fù)習(xí)課件(新版)華東師大版.ppt(28頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第5章相交線與平行線復(fù)習(xí),,,,,,,,,,,,,,知識(shí)結(jié)構(gòu),相交線,,,,兩條直線相交,鄰補(bǔ)角、對(duì)頂角,對(duì)頂角相等,垂線及其性質(zhì),點(diǎn)到直線的距離,,,,,,,兩條直線被第三條直線所截,,同位角、內(nèi)錯(cuò)角、同旁內(nèi)角,,平行線,平行公理,平移,,,,,,,判定,性質(zhì),,,,,1.互為鄰補(bǔ)角:兩條直線相交所構(gòu)成的四了角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。如圖(1),,,1,2,2.對(duì)頂角:(1)兩條直線相交所構(gòu)成的四個(gè)角中,,(1),有公共頂點(diǎn)但沒有公共邊的兩個(gè)角是對(duì)頂角。如圖(2).,,,(2),1,2,3,4,(2)一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(zhǎng)線,這兩個(gè)角是對(duì)頂角。,3.鄰補(bǔ)角的性質(zhì):同角的補(bǔ)角相等。,4.對(duì)頂角性質(zhì):對(duì)頂角相等。,兩個(gè)特征:(1)具有公共頂點(diǎn);(2)角的兩邊互為反向延長(zhǎng)線。,n條直線相交于一點(diǎn),就有n(n-1)對(duì)對(duì)頂角。,※相交※,1.直線AB、CD相交與于O,圖中有幾對(duì)對(duì)頂角?鄰補(bǔ)角?當(dāng)一個(gè)角確定了,另外三個(gè)角的大小確定了嗎?,2.直線AB、CD、EF相交與于O,圖中有幾對(duì)對(duì)頂角?∠AOC的對(duì)頂角是_______∠COF的對(duì)頂角是________∠AOC的鄰補(bǔ)角是____。∠EOD的鄰補(bǔ)角是_______。,∠BOD,∠DOE,∠COB,∠AOD,∠DOF,∠COE,,,A,B,C,D,O,在解決與角的計(jì)算有關(guān)的問題時(shí),經(jīng)常用到代數(shù)方法。,例2.已知直線AB、CD、EF相交于點(diǎn)O,,,,,O,A,B,C,D,E,F,1.垂線的定義:兩條直線相交,所構(gòu)成的四個(gè)角中,有一個(gè)角是時(shí),就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線。它們的交點(diǎn)叫垂足。,2.垂線的性質(zhì):(1)過一點(diǎn)有且只有一條直線與已知直線垂直。性質(zhì)(2):直線外一點(diǎn)與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短。簡(jiǎn)稱:垂線段最短。,3.點(diǎn)到直線的距離:從直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫做點(diǎn)到直線的距離。4.如遇到線段與線段,線段與射線,射線與射線,線段或射線與直線垂直時(shí),特指它們所在的直線互相垂直。5.垂線是直線,垂線段特指一條線段是圖形,點(diǎn)到直線距離是指垂線段的長(zhǎng)度,是指一個(gè)數(shù)量,是有單位的。,你能量出C到AB的距離,B到AC的距離,A到BC的距離嗎?,,,,A,D,C,B,,,,,,E,F,拓展應(yīng)用,,如圖:要把水渠中的水引到水池C中,在渠岸的什么地方開溝,水溝的長(zhǎng)度才能最短?請(qǐng)畫出圖來,并說明理由。,C,∟,理由:垂線段最短,,,,┓,A,B,C,D,O,E,此題需要正確地應(yīng)用、對(duì)頂角、鄰補(bǔ)角、垂直的概念和性質(zhì)。,,,,,O,A,D,C,B,由垂直先找到的角,再根據(jù)角之間的關(guān)系求解。,,平行線的概念:在同一平面內(nèi),不相交的兩條直線叫做平行線。2.兩直線的位置關(guān)系:在同一平面內(nèi),兩直線的位置關(guān)系只有兩種:(1)相交;(2)平行。3.平行線的基本性質(zhì):(1)平行公理(平行線的存在性和唯一性)經(jīng)過直線外一點(diǎn),有且只有一條直線與已知直線平行。(2)推論(平行線的傳遞性)如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。4.同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的概念同位角、內(nèi)錯(cuò)角、同旁內(nèi)角,指的是一條直線分別與兩條直線相交構(gòu)成的八個(gè)角中,不共頂點(diǎn)的角之間的特殊位置關(guān)系。它們與對(duì)頂角、鄰補(bǔ)角一樣,總是成對(duì)存在著的。,同位角的位置特征是:(1)在截線的同旁,(2)被截兩直線的同方向。,內(nèi)錯(cuò)角的位置特征是:(1)在截線的兩旁,(2)在被截兩直線之間。同旁內(nèi)角的位置特征是:(1)在截線的同旁,(2)在被截兩直線之間。,判定兩直線平行的方法有三種:,(1)定義法;在同一平面內(nèi)不相交的兩條直線是平行線。,(2)傳遞法;兩條直線都和第三條直線平行,這兩條直線也平行。,(3)三種角判定(3種方法):同位角相等,兩直線平行。內(nèi)錯(cuò)角相等,兩直線平行。同旁內(nèi)角互補(bǔ),兩直線平行。,在這五種方法中,定義一般不常用。,讀下列語句,并畫出圖形,點(diǎn)p是直線AB外的一點(diǎn),直線CD經(jīng)過點(diǎn)P,且與直線AB平行;直線AB、CD是相交直線,點(diǎn)P是直線AB外的一點(diǎn),直線EF經(jīng)過點(diǎn)P與直線AB平行,與直線CD交于E.,.,P,,A,B,,C,D,,,C,D,A,B,P,.,,E,F,∠1和∠2不是同位角,,練一練,如圖中的∠1和∠2是同位角嗎?為什么?,∵∠1和∠2無一邊共線。,∠1和∠2是同位角,,∵∠1和∠2有一邊共線、同向,且不共頂點(diǎn)。,如圖:直線a、b被直線l截的8個(gè)角中,同位角:∠1與∠5,∠2與∠6,∠3與∠7,∠4與∠8.,內(nèi)錯(cuò)角:∠3與∠5,∠4與∠6.,同旁內(nèi)角:∠4與∠5,∠3與∠6.,,練一練,,(1)∠1和∠9是由直線、被直線所截成的角;,(2)∠6和∠12是由直線、被直線所截成的角;,(3)∠4和∠6是由直線、被直線所截成的角;,(4)由直線AB、CD被直線EF所截成的同位角有;,(5)∠7和∠12是角;,AB,CD,EF,同位,AB,EF,CD,內(nèi)錯(cuò),AB,CD,EF,同旁內(nèi),∠1和∠9、∠4和∠12、∠2和∠10、∠3和∠11,同旁內(nèi),例1.∠1與哪個(gè)角是內(nèi)錯(cuò)角?,,,,,A,C,B,D,E,,1,,2,答:∠EAC,答:∠DAB,答:∠BAC,∠BAE,∠2,∠1與哪個(gè)角是同旁內(nèi)角?,∠2與哪個(gè)角是內(nèi)錯(cuò)角?,1、觀察右圖并填空:(1)∠1與是同位角;(2)∠5與是同旁內(nèi)角;(3)∠1與是內(nèi)錯(cuò)角;,∠4,∠3,∠2,2、指出圖中的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角,同位角:∠4與∠1,內(nèi)錯(cuò)角:∠4與∠2,同旁內(nèi)角:∠3與∠1,,,,,,,,,,,平行線的性質(zhì),平行線的判定,兩直線平行,條件,結(jié)論,同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ),,,,條件,同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ),結(jié)論,兩直線平行,,,,夾在兩平行線間的垂線段的長(zhǎng)度,叫做兩平行線間的距離。,綜合應(yīng)用:,,,,,,,,,A,B,C,D,E,F,1,2,3,1、填空:(1)、∵∠A=____,(已知)AC∥ED,(_____________________),(2)、∵AB∥______,(已知)∠2=∠4,(______________________),,4,,5,(3)、___∥___,(已知)∠B=∠3.(______________________),試一試,你準(zhǔn)行!模仿上題自己編題。(考查平行線的性質(zhì)或判定),∠4,同位角相等,兩直線平行。,DF,兩直線平行,內(nèi)錯(cuò)角相等。,AB,DF,兩直線平行,同位角相等.,,判定,,性質(zhì),,性質(zhì),∴,∴,∴,∵,,,,,,,,,,A,B,C,D,E,F,,,1,2,,,,3,4,,,5,6,如圖:填空,并注明理由。(1)、∵∠1=∠2(已知)——∥——()∵∠3=∠4(已知)——∥——()∵∠5=∠6(已知)——∥——()∵∠5+∠AFE=180(已知)——∥——()∵AB∥FC,ED∥FC(已知)——∥——(),∴,∴,∴,∴,∴,AB,ED,內(nèi)錯(cuò)角相等。兩直線平行,,AF,BE,同位角相等,兩直線平行。,BC,EF,內(nèi)錯(cuò)角相等,兩直線平行。,AF,BE,同旁內(nèi)角互補(bǔ),兩直線平行。,AB,ED,平行于同直線的兩條直線互相平行。,平行線的判定應(yīng)用練習(xí):,,例2.已知∠DAC=∠ACB,∠D+∠DFE=1800,求證:EF//BC,證明:∵∠DAC=∠ACB(已知)∴AD//BC(內(nèi)錯(cuò)角相等,兩直線平行)∵∠D+∠DFE=1800(已知)∴AD//EF(同旁內(nèi)角互補(bǔ),兩直線平行)∴EF//BC(平行于同一條直線的兩條直線互相平行),A,B,C,D,E,F,,,,,,,,,例3.如圖已知:∠1+∠2=180,求證:AB∥CD。,證明:由:∠1+∠2=180(已知),∠1=∠3(對(duì)頂角相等).∠2=∠4(對(duì)頂角相等)根據(jù):等量代換得:∠3+∠4=180.根據(jù):同旁內(nèi)角互補(bǔ),兩直線平行得:AB//CD.,例4.如圖,已知:AC∥DE,∠1=∠2,試證明AB∥CD。,證明:∵由AC∥DE(已知)∴∠ACD=∠2(兩直線平行,內(nèi)錯(cuò)角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代換)∴AB∥CD(內(nèi)錯(cuò)角相等,兩直線平行),例5.已知EF⊥AB,CD⊥AB,∠EFB=∠GDC,求證:∠AGD=∠ACB。證明:∵EF⊥AB,CD⊥AB(已知)∴AD∥BC(垂直于同一條直線的兩條直線互相平行)∴∠EFB=∠DCB(兩直線平行,同位角相等)∵∠EFB=∠GDC(已知)∴∠DCB=∠GDC(等量代換)∴DG∥BC(內(nèi)錯(cuò)角相等,兩直線平行)∴∠AGD=∠ACB(兩直線平行,同位角相等),例6.兩塊平面鏡的夾角應(yīng)為多少度?,如圖,兩平面鏡а、β的夾角為θ,入射光線AO平行于β入射到а上,經(jīng)兩次反射后的反射光線平行于а,則角θ=_____度,,,,,,,,,а,β,θ,O,B,A,1,2,3,4,5,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 湖南省衡陽(yáng)市耒陽(yáng)市七年級(jí)數(shù)學(xué)上冊(cè) 第5章 相交線與平行線復(fù)習(xí)課件新版華東師大版 湖南省 衡陽(yáng)市 耒陽(yáng)市 年級(jí) 數(shù)學(xué) 上冊(cè) 相交 平行線 復(fù)習(xí) 課件 新版 華東師大
鏈接地址:http://kudomayuko.com/p-11539298.html