2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何 4 第4講 直線、平面平行的判定與性質(zhì)練習(xí) 理(含解析)

上傳人:Sc****h 文檔編號:116801536 上傳時間:2022-07-06 格式:DOC 頁數(shù):8 大?。?.71MB
收藏 版權(quán)申訴 舉報 下載
2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何 4 第4講 直線、平面平行的判定與性質(zhì)練習(xí) 理(含解析)_第1頁
第1頁 / 共8頁
2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何 4 第4講 直線、平面平行的判定與性質(zhì)練習(xí) 理(含解析)_第2頁
第2頁 / 共8頁
2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何 4 第4講 直線、平面平行的判定與性質(zhì)練習(xí) 理(含解析)_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何 4 第4講 直線、平面平行的判定與性質(zhì)練習(xí) 理(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何 4 第4講 直線、平面平行的判定與性質(zhì)練習(xí) 理(含解析)(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第4講 直線、平面平行的判定與性質(zhì) [基礎(chǔ)題組練] 1.(2019·高考全國卷Ⅱ)設(shè)α,β為兩個平面,則α∥β的充要條件是(  ) A.α內(nèi)有無數(shù)條直線與β平行 B.α內(nèi)有兩條相交直線與β平行 C.α,β平行于同一條直線 D.α,β垂直于同一平面 解析:選B.對于A,α內(nèi)有無數(shù)條直線與β平行,當(dāng)這無數(shù)條直線互相平行時,α與β可能相交,所以A不正確;對于B,根據(jù)兩平面平行的判定定理與性質(zhì)知,B正確;對于C,平行于同一條直線的兩個平面可能相交,也可能平行,所以C不正確;對于D,垂直于同一平面的兩個平面可能相交,也可能平行,如長方體的相鄰兩個側(cè)面都垂直于底面,但它們是相交的,所以D不

2、正確.綜上可知選B. 2.已知m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下列命題中正確的是(  ) A.若α⊥γ,α⊥β,則γ∥β B.若m∥n,m?α,n?β,則α∥β C.若m∥n,m⊥α,n⊥β,則α∥β D.若m∥n,m∥α,則n∥α 解析:選C.對于A,若α⊥γ,α⊥β,則γ∥β或γ與β相交;對于B,若m∥n,m?α,n?β,則α∥β或α與β相交;易知C正確;對于D,若m∥n,m∥α,則n∥α或n在平面α內(nèi).故選C. 3.如圖,L,M,N分別為正方體對應(yīng)棱的中點(diǎn),則平面LMN與平面PQR的位置關(guān)系是(  ) A.垂直         B.相交不垂直

3、 C.平行 D.重合 解析:選C.如圖,分別取另三條棱的中點(diǎn)A,B,C,將平面LMN延展為平面正六邊形AMBNCL,因?yàn)镻Q∥AL,PR∥AM,且PQ與PR相交,AL與AM相交,所以平面PQR∥平面AMBNCL,即平面LMN∥平面PQR. 4.如圖所示,在空間四邊形ABCD中,E,F(xiàn)分別為邊AB,AD上的點(diǎn),且AE∶EB=AF∶FD=1∶4,又H,G分別為BC,CD的中點(diǎn),則(  ) A.BD∥平面EFGH,且四邊形EFGH是矩形 B.EF∥平面BCD,且四邊形EFGH是梯形 C.HG∥平面ABD,且四邊形EFGH是菱形 D.EH∥平面ADC,且四邊形EFGH是平行四邊形

4、解析:選B.由AE∶EB=AF∶FD=1∶4知EF綊BD,又EF?平面BCD,所以EF∥平面BCD.又H,G分別為BC,CD的中點(diǎn),所以HG綊BD,所以EF∥HG且EF≠HG.所以四邊形EFGH是梯形. 5.在正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別是A1B1,B1C1,BB1的中點(diǎn),給出下列四個推斷: ①FG∥平面AA1D1D; ②EF∥平面BC1D1; ③FG∥平面BC1D1; ④平面EFG∥平面BC1D1. 其中推斷正確的序號是(  ) A.①③ B.①④ C.②③ D.②④ 解析:選A.因?yàn)樵谡襟wABCD-A1B1C1D1中,E,F(xiàn),G分別是A1B

5、1,B1C1,BB1的中點(diǎn),所以FG∥BC1,因?yàn)锽C1∥AD1,所以FG∥AD1, 因?yàn)镕G?平面AA1D1D,AD1?平面AA1D1D,所以FG∥平面AA1D1D,故①正確; 因?yàn)镋F∥A1C1,A1C1與平面BC1D1相交,所以EF與平面BC1D1相交,故②錯誤; 因?yàn)镋,F(xiàn),G分別是A1B1,B1C1,BB1的中點(diǎn), 所以FG∥BC1,因?yàn)镕G?平面BC1D1,BC1?平面BC1D1, 所以FG∥平面BC1D1,故③正確; 因?yàn)镋F與平面BC1D1相交,所以平面EFG與平面BC1D1相交,故④錯誤.故選A. 6.在四面體A-BCD中,M,N分別是△ACD,△BCD的重心,

6、則四面體的四個面中與MN平行的是________. 解析:如圖,取CD的中點(diǎn)E,連接AE,BE, 則EM∶MA=1∶2, EN∶BN=1∶2, 所以MN∥AB. 因?yàn)锳B?平面ABD,MN?平面ABD,AB?平面ABC,MN?平面ABC, 所以MN∥平面ABD,MN∥平面ABC. 答案:平面ABD與平面ABC 7.如圖,正方體ABCD-A1B1C1D1中,AB=2,點(diǎn)E為AD的中點(diǎn),點(diǎn)F在CD上.若EF∥平面AB1C,則線段EF的長度等于________. 解析:因?yàn)镋F∥平面AB1C,EF?平面ABCD,平面ABCD∩平面AB1C=AC, 所以EF∥AC,所以F為DC

7、的中點(diǎn). 故EF=AC=. 答案: 8.如圖所示,在正四棱柱ABCD-A1B1C1D1中,E,F(xiàn),G,H分別是棱CC1,C1D1,D1D,DC的中點(diǎn),N是 BC的中點(diǎn),點(diǎn)M在四邊形EFGH及其內(nèi)部運(yùn)動,則M只需滿足條件________時,就有MN∥平面B1BDD1.(注:請?zhí)钌夏阏J(rèn)為正確的一個條件即可,不必考慮全部可能情況) 解析:連接HN,F(xiàn)H,F(xiàn)N,則FH∥DD1,HN∥BD,F(xiàn)H∩HN=H,DD1∩BD=D, 所以平面FHN∥平面B1BDD1,只需M∈FH,則MN?平面FHN, 所以MN∥平面B1BDD1. 答案:點(diǎn)M在線段FH上(或點(diǎn)M與點(diǎn)H重合) 9.如圖所示的多面體

8、是由底面為ABCD的長方體被截面AEC1F所截而得到的,其中AB=4,BC=2,CC1=3,BE=1. (1)求證:四邊形AEC1F為平行四邊形; (2)求BF的長. 解:(1)證明:由已知得平面ABE∥平面DCC1F,平面AEC1F∩平面ABE=AE,平面AEC1F∩平面DCC1F=C1F, 所以AE∥C1F,同理可得AF∥C1E,所以四邊形AEC1F是平行四邊形. (2)在CC1上取點(diǎn)H,使CH=1,可得四邊形BCHE為矩形,即可得四邊形ADHE為平行四邊形, 所以DH∥AE,AE∥FC1, 所以四邊形FDHC1為平行四邊形,所以FD=3-1=2, 所以BF==2. 10

9、.如圖所示,四邊形ABCD與四邊形ADEF都為平行四邊形,M,N,G分別是AB,AD,EF的中點(diǎn).求證: (1)BE∥平面DMF; (2)平面BDE∥平面MNG. 證明:(1)如圖所示,設(shè)DF與GN交于點(diǎn)O,連接AE,則AE必過點(diǎn)O, 連接MO,則MO為△ABE的中位線, 所以BE∥MO. 因?yàn)锽E?平面DMF,MO?平面DMF, 所以BE∥平面DMF. (2)因?yàn)镹,G分別為平行四邊形ADEF的邊AD,EF的中點(diǎn), 所以DE∥GN. 因?yàn)镈E?平面MNG,GN?平面MNG, 所以DE∥平面MNG. 因?yàn)镸為AB的中點(diǎn), 所以MN為△ABD的中位線, 所以BD∥

10、MN. 因?yàn)锽D?平面MNG,MN?平面MNG, 所以BD∥平面MNG. 因?yàn)镈E與BD為平面BDE內(nèi)的兩條相交直線, 所以平面BDE∥平面MNG. [綜合題組練] 1.(創(chuàng)新型)如圖,透明塑料制成的長方體容器ABCD-A1B1C1D1內(nèi)灌進(jìn)一些水,固定容器底面一邊BC于地面上,再將容器傾斜,隨著傾斜度的不同,有下面四個命題: ①沒有水的部分始終呈棱柱形; ②水面EFGH所在四邊形的面積為定值; ③棱A1D1始終與水面所在平面平行; ④當(dāng)容器傾斜如圖所示時,BE·BF是定值. 其中正確的個數(shù)是(  ) A.1 B.2 C.3 D.4 解析:選C.由題圖,

11、顯然①是正確的,②是錯的; 對于③因?yàn)锳1D1∥BC,BC∥FG, 所以A1D1∥FG且A1D1?平面EFGH, 所以A1D1∥平面EFGH(水面). 所以③是正確的; 因?yàn)樗嵌康?定體積V). 所以S△BEF·BC=V, 即BE·BF·BC=V. 所以BE·BF=(定值),即④是正確的,故選C. 2.(應(yīng)用型)在三棱錐S-ABC中,△ABC是邊長為6的正三角形,SA=SB=SC=12,平面DEFH分別與AB,BC,SC,SA交于D,E,F(xiàn),H,且它們分別是AB,BC,SC,SA的中點(diǎn),那么四邊形DEFH的面積為(  ) A.18    B.18 C.36    D.

12、36 解析:選A.因?yàn)镈,E,F(xiàn),H分別是AB,BC,SC,SA的中點(diǎn),所以DE∥AC,F(xiàn)H∥AC,DH∥SB,EF∥SB,則四邊形DEFH是平行四邊形,且HD=SB=6,DE=AC=3.如圖,取AC的中點(diǎn)O,連接OB,SO,因?yàn)镾A=SC=12,AB=BC=6,所以AC⊥SO,AC⊥OB,又SO∩OB=O,所以AO⊥平面SOB,所以AO⊥SB,則HD⊥DE,即四邊形DEFH是矩形,所以四邊形DEFH的面積S=6×3=18,故選A. 3.(應(yīng)用型)在正方體ABCD-A1B1C1D1中,M,N,Q分別是棱D1C1,A1D1,BC的中點(diǎn),點(diǎn)P在BD1上且BP=BD1.則以下四個說法: ①M(fèi)N

13、∥平面APC; ②C1Q∥平面APC; ③A,P,M三點(diǎn)共線; ④平面MNQ∥平面APC. 其中說法正確的是________(填序號). 解析:①連接MN,AC,則MN∥AC,連接AM,CN, 易得AM,CN交于點(diǎn)P,即MN?平面APC,所以MN∥平面APC是錯誤的; ②由①知M,N在平面APC上,由題易知AN∥C1Q,AN?平面APC, 所以C1Q∥平面APC是正確的; ③由①知A,P,M三點(diǎn)共線是正確的; ④由①知MN?平面APC, 又MN?平面MNQ, 所以平面MNQ∥平面APC是錯誤的. 答案:②③ 4.如圖所示,正方體ABCD-A1B1C1D1的棱長為a,

14、點(diǎn)P是棱AD上一點(diǎn),且AP=,過B1,D1,P的平面交底面ABCD于PQ,Q在直線CD上,則PQ=________. 解析:因?yàn)槠矫鍭1B1C1D1∥平面ABCD,而平面B1D1P∩平面ABCD=PQ,平面B1D1P∩平面A1B1C1D1=B1D1, 所以B1D1∥PQ. 又因?yàn)锽1D1∥BD,所以BD∥PQ, 設(shè)PQ∩AB=M,因?yàn)锳B∥CD, 所以△APM∽△DPQ. 所以==2,即PQ=2PM. 又知△APM∽△ADB, 所以==, 所以PM=BD,又BD=a, 所以PQ=a. 答案:a 5.(應(yīng)用型)在如圖所示的多面體中,DE⊥平面ABCD,AF∥DE,AD∥B

15、C,AB=CD,∠ABC=60°,BC=2AD=4DE=4. (1)在AC上求作點(diǎn)P,使PE∥平面ABF,請寫出作法并說明理由; (2)求三棱錐A-CDE的高. 解:(1)取BC的中點(diǎn)G,連接DG,交AC于點(diǎn)P,連接EG,EP.此時P為所求作的點(diǎn)(如圖所示). 下面給出證明:因?yàn)锽C=2AD,G為BC的中點(diǎn), 所以BG=AD. 又因?yàn)锽C∥AD, 所以四邊形BGDA是平行四邊形, 故DG∥AB,即DP∥AB. 又AB?平面ABF,DP?平面ABF, 所以DP∥平面ABF. 因?yàn)锳F∥DE,AF?平面ABF,DE?平面ABF, 所以DE∥平面ABF. 又因?yàn)镈P?平面P

16、DE,DE?平面PDE,PD∩DE=D, 所以平面PDE∥平面ABF, 因?yàn)镻E?平面PDE, 所以PE∥平面ABF. (2)在等腰梯形ABCD中,因?yàn)椤螦BC=60°,BC=2AD=4, 所以可求得梯形的高為,從而△ACD的面積為×2×=. 因?yàn)镈E⊥平面ABCD, 所以DE是三棱錐E-ACD的高. 設(shè)三棱錐A-CDE的高為h. 由VA-CDE=VE-ACD,可得×S△CDE×h=S△ACD×DE,即×2×1×h=×1,解得h=. 故三棱錐A-CDE的高為. 6.如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形. (1)證明:平面A1BD∥平面CD1B

17、1; (2)若平面ABCD∩平面B1D1C=直線l,證明B1D1∥l. 證明:(1)由題設(shè)知BB1綊DD1, 所以四邊形BB1D1D是平行四邊形, 所以BD∥B1D1. 又BD?平面CD1B1, B1D1?平面CD1B1, 所以BD∥平面CD1B1. 因?yàn)锳1D1綊B1C1綊BC, 所以四邊形A1BCD1是平行四邊形, 所以A1B∥D1C. 又A1B?平面CD1B1, D1C?平面CD1B1, 所以A1B∥平面CD1B1. 又因?yàn)锽D∩A1B=B, 所以平面A1BD∥平面CD1B1. (2)由(1)知平面A1BD∥平面CD1B1, 又平面ABCD∩平面B1D1C=直線l, 平面ABCD∩平面A1BD=直線BD, 所以直線l∥直線BD, 在四棱柱ABCD-A1B1C1D1中,四邊形BDD1B1為平行四邊形, 所以B1D1∥BD, 所以B1D1∥l. - 8 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!