2020版高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項(xiàng)突破 高考大題專項(xiàng)5 直線與圓錐曲線(壓軸大題) 文 北師大版

上傳人:Sc****h 文檔編號(hào):117026014 上傳時(shí)間:2022-07-07 格式:DOC 頁(yè)數(shù):10 大?。?.57MB
收藏 版權(quán)申訴 舉報(bào) 下載
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項(xiàng)突破 高考大題專項(xiàng)5 直線與圓錐曲線(壓軸大題) 文 北師大版_第1頁(yè)
第1頁(yè) / 共10頁(yè)
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項(xiàng)突破 高考大題專項(xiàng)5 直線與圓錐曲線(壓軸大題) 文 北師大版_第2頁(yè)
第2頁(yè) / 共10頁(yè)
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項(xiàng)突破 高考大題專項(xiàng)5 直線與圓錐曲線(壓軸大題) 文 北師大版_第3頁(yè)
第3頁(yè) / 共10頁(yè)

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項(xiàng)突破 高考大題專項(xiàng)5 直線與圓錐曲線(壓軸大題) 文 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項(xiàng)突破 高考大題專項(xiàng)5 直線與圓錐曲線(壓軸大題) 文 北師大版(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、高考大題專項(xiàng)五 直線與圓錐曲線壓軸大題 突破1 圓錐曲線中的最值、范圍、證明問題 1.(2018江西上饒一模,20)已知橢圓M:=1(a>b>0)的離心率為,點(diǎn)P1, 在橢圓M上. (1)求橢圓M的方程; (2)經(jīng)過橢圓M的右焦點(diǎn)F的直線l與橢圓M交于C,D兩點(diǎn),A,B分別為橢圓M的左、右頂點(diǎn),記△ABD與△ABC的面積分別為S1和S2,求|S1-S2|的取值范圍. 2.(2018寧夏銀川一中四模,20)已知橢圓C:=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,點(diǎn)M在橢圓上,有|MF1|+|MF2|=4,橢圓的離心率為e=. (1)求橢圓C的標(biāo)準(zhǔn)方程;

2、(2)已知N(4,0),過點(diǎn)N作斜率為k(k>0)的直線l與橢圓交于A,B不同兩點(diǎn),線段AB的中垂線為l',記l'的縱截距為m,求m的取值范圍. 3.(2018北京海淀區(qū)二模,20)已知橢圓C:x2+2y2=1的左右頂點(diǎn)分別為A1,A2. (1)求橢圓C的長(zhǎng)軸長(zhǎng)與離心率; (2)若不垂直于x軸的直線l與橢圓C相交于P,Q兩點(diǎn),直線A1P與A2Q交于點(diǎn)M,直線A1Q與A2P交于點(diǎn)N.求證:直線MN垂直于x軸. 4.(2018廣東珠海質(zhì)檢,20)已知拋物線C1:y2=2px(p>0),圓C2:x2+y2=4,直線l:y=kx+b與拋物線C1相

3、切于點(diǎn)M,與圓C2相切于點(diǎn)N. (1)若直線l的斜率k=1,求直線l和拋物線C1的方程; (2)設(shè)F為拋物線C1的焦點(diǎn),設(shè)△FMN,△FON的面積分別為S1,S2,若S1=λS2,求λ的取值范圍. 5.(2018重慶巴蜀中學(xué)適應(yīng)性考試(七),20)已知橢圓=1(a>b>0)與直線y=x-2相切,設(shè)橢圓的上頂點(diǎn)為M,F1,F2是橢圓的左、右焦點(diǎn),且△MF1F2為等腰直角三角形. (1)求橢圓的標(biāo)準(zhǔn)方程; (2)直線l過點(diǎn)N0,- 交橢圓于A,B兩點(diǎn),直線MA、MB分別與橢圓的短軸為直徑的圓交于S,T兩點(diǎn),求證:O,S,T三點(diǎn)共線.

4、6.(2018河北衡水聯(lián)考,20)已知橢圓=1(a>b>0)的離心率e=,左、右焦點(diǎn)分別為F1,F2,且F2與拋物線y2=4x的焦點(diǎn)重合. (1)求橢圓的標(biāo)準(zhǔn)方程; (2)若過F1的直線交橢圓于B,D兩點(diǎn),過F2的直線交橢圓于A,C兩點(diǎn),且AC⊥BD,求|AC|+|BD|的最小值. 突破2 圓錐曲線中的定點(diǎn)、定值與存在性問題                     1.(2018福建廈門質(zhì)檢一,20)設(shè)O為坐標(biāo)原點(diǎn),橢圓C:=1(a>b>0)的左焦點(diǎn)為F,離心率為.直線l:y=kx+m(m>0)與C交于A,B兩點(diǎn),AF的中點(diǎn)為M,|OM|+|MF|=

5、5. (1)求橢圓C的方程; (2)設(shè)點(diǎn)P(0,1),=-4,求證:直線l過定點(diǎn),并求出定點(diǎn)的坐標(biāo). 2.(2018東北三省三校(哈師大附中、東北師大附中、遼寧省實(shí)驗(yàn)中學(xué))一模,20)已知橢圓C:=1(a>b>0)的離心率為,F1(-c,0),F2(c,0)為橢圓C的左、右焦點(diǎn),M為橢圓C上的任意一點(diǎn),△MF1F2的面積的最大值為1,A、B為橢圓C上任意兩個(gè)關(guān)于x軸對(duì)稱的點(diǎn),直線x=與x軸的交點(diǎn)為P,直線PB交橢圓C于另一點(diǎn)E. (1)求橢圓C的標(biāo)準(zhǔn)方程; (2)求證:直線AE過定點(diǎn). 3.(2018廣東一模,20)已知橢圓C:=1(

6、a>b>0)的離心率為,且C過點(diǎn)1,. (1)求橢圓C的方程; (2)若直線l與橢圓C交于P,Q兩點(diǎn)(點(diǎn)P,Q均在第一象限),且直線OP,l,OQ的斜率成等比數(shù)列,證明:直線l的斜率為定值. 4.已知定直線l:y=x+3,定點(diǎn)A(2,1),以坐標(biāo)軸為對(duì)稱軸的橢圓C過點(diǎn)A且與l相切. (1)求橢圓的標(biāo)準(zhǔn)方程; (2)橢圓的弦AP,AQ的中點(diǎn)分別為M,N,若MN平行于l,則OM,ON斜率之和是否為定值?若是定值,請(qǐng)求出該定值;若不是定值,請(qǐng)說明理由. 5.(2018江西六校聯(lián)考,20)已知F1,F2分別是橢圓C:=1(

7、a>b>0)的左、右焦點(diǎn),其中右焦點(diǎn)為拋物線y2=4x的焦點(diǎn),點(diǎn)M-1,在橢圓C上. (1)求橢圓C的標(biāo)準(zhǔn)方程; (2)設(shè)與坐標(biāo)軸不垂直的直線l過F2與橢圓C交于A,B兩點(diǎn),過點(diǎn)M-1,且平行直線l的直線交橢圓C于另一點(diǎn)N,若四邊形MNBA為平行四邊形,試問直線l是否存在?若存在,請(qǐng)求出l的斜率;若不存在,請(qǐng)說明理由. 6.(2018遼寧省部分重點(diǎn)中學(xué)協(xié)作體模擬,20)已知M是橢圓C:=1(a>b>0)上的一點(diǎn),F1,F2是該橢圓的左右焦點(diǎn),且|F1F2|=2. (1)求橢圓C的方程; (2)設(shè)點(diǎn)A,B是橢圓C上與坐標(biāo)原點(diǎn)O不共線的兩點(diǎn),直線OA,OB,A

8、B的斜率分別為k1,k2,k3,且k1k2=k2.試探究|OA|2+|OB|2是否為定值,若是,求出定值,若不是,說明理由. 高考大題專項(xiàng)五 直線與圓錐曲線壓軸大題 突破1 圓錐曲線中的最值、范圍、證明問題 1.解 (1)因?yàn)閑=,橢圓M過點(diǎn)P1, ,所以c=1,a=2. 所以橢圓M方程為=1. (2)當(dāng)直線l無(wú)斜率時(shí),直線方程為x=1, 此時(shí)C1,-,D1,,△ABD,△ABC面積相等,|S1-S2|=0; 當(dāng)直線l斜率存在(顯然k≠0)時(shí),設(shè)直線方程為y=k(x-1), 設(shè)C(x1,y1),D(x2,y2). 由 消去y得(3+4k2)x2-8k2x+4k2-

9、12=0, 顯然Δ>0,方程有根,且x1+x2=,x1x2=, 此時(shí)|S1-S2|=2||y2|-|y1||=2|y2+y1|=, 因?yàn)閗≠0,上式=k=±時(shí)等號(hào)成立, 所以|S1-S2|的最大值為, 所以0≤|S1-S2|≤. 2.解 (1)因?yàn)閨MF1|+|MF2|=4,所以2a=4,所以a=2. 因?yàn)閑=,所以c=1, 所以b2=a2-c2=3,所以橢圓C的標(biāo)準(zhǔn)方程為=1. (2)由題意可知直線l的斜率存在,設(shè)l:y=k(x-4),A(x1,y1),B(x2,y2), 由消去y得 (4k2+3)x2-32k2x+64k2-12=0, x1+x2=,x1x2=,

10、又Δ=-4(4k2+3)(64k2-12)>0,解得-0恒成立,所以m=在k∈0,上為增函數(shù),所以0

11、程為y=k1(x+),A2Q的方程為y=k2(x-), 聯(lián)立直線A1P與直線A2Q方程得xM=. 同理可得xN=. 下面證明k1k4=-. 設(shè)P(x0,y0),則+2=2. 所以k1k4==-. 同理k2k3=-. 所以xN==xM. 所以直線MN垂直于x軸. 4.解 (1)由題設(shè)知l:x-y+b=0,且b>0,由l與C2相切知,C2(0,0)到l的距離d==2,得b=2,所以l:x-y+2=0.將l與C1的方程聯(lián)立消x得y2-2py+4p=0, 其Δ=4p2-16p=0得p=4,∴C1:y2=8x. 綜上所述,l:x-y+2=0,C1:y2=8x. (2)不妨設(shè)k

12、>0,根據(jù)對(duì)稱性,k>0得到的結(jié)論與k<0得到的結(jié)論相同. 此時(shí)b>0,又知p>0,設(shè)M(x1,y1),N(x2,y2), 由 消去y得k2x2+2(kb-p)x+b2=0, 由Δ=4(kb-p)2-4k2b2=0, 得p=2kb,M, 由l與C2切于點(diǎn)N知C2(0,0)到l:kx-y+b=0的距離d==2,得b=2,則p=4k, 故M,4. 由得N-, 故|MN|=|xM-xN|==. F,0到l:kx-y+b=0的距離d0==2k2+2, 所以S1=S△FMN=|MN|d0=, 又因?yàn)镾2=S△FON=|OF|·|yN|=2k, 所以λ==+2(k2+1)=2k2

13、++3≥2+3,當(dāng)且僅當(dāng)2k2=即k=時(shí)取等號(hào), 與上同理可得,k<0時(shí)亦是同上結(jié)論. 綜上所述,λ的取值范圍是[3+2,+∞). 5.(1)解 ∵△MF1F2為等腰直角三角形, ∴b=c,a=b, ∴橢圓的方程為x2+2y2=2b2. 由消去x整理得4y2+8y+16-2b2=0, ∵橢圓與直線相切, ∴Δ=128-16(16-2b2)=0, 解得b2=4. ∴橢圓的標(biāo)準(zhǔn)方程為x2+2y2=8,即=1. (2)證明由題意得直線AB的斜率存在,設(shè)直線AB的方程為y=kx-, 由 消去y整理得(1+2k2)x2-kx-=0, ∵直線AB與橢圓交于兩點(diǎn), ∴Δ=+4×

14、(2k2+1)=(9k2+4)>0. 設(shè)點(diǎn)A(x1,y1),B(x2,y2), 則x1+x2=,x1x2=, 又M(0,2), ∴=x1x2+(y1-2)(y2-2) =x1x2+kx1-kx2- =(1+k2)x1x2-k(x1+x2)+ =- =-+1=0. ∴MA⊥MB, ∴∠SMT=. ∵圓的直徑為橢圓的短軸,∴圓心為原點(diǎn)O, ∴點(diǎn)O,S,T三點(diǎn)共線. 6.解 (1)拋物線y2=4x的焦點(diǎn)為(1,0),所以c=1,又因?yàn)閑=,所以a=, 所以b2=2,所以橢圓的標(biāo)準(zhǔn)方程為=1. (2)①當(dāng)直線BD的斜率k存在且k≠0時(shí), 直線BD的方程為y=k(x+1)

15、,代入橢圓方程=1, 化簡(jiǎn)得(3k2+2)x2+6k2x+3k2-6=0. 設(shè)B(x1,y1),D(x2,y2),則x1+x2=-,x1x2=, |BD|=·|x1-x2|=. 易知直線AC的斜率為-, 所以|AC|=, |AC|+|BD|=4(k2+1)= =, 當(dāng)k2=1,即k=±1時(shí),上式取等號(hào),故|AC|+|BD|的最小值為. ②當(dāng)直線BD的斜率不存在或等于零時(shí),易得|AC|+|BD|=. 綜上所述,|AC|+|BD|的最小值為. 突破2 圓錐曲線中的定點(diǎn)、定值與存在性問題 1.解 (1)設(shè)橢圓的右焦點(diǎn)為F1,則OM為△AFF1的中位線. ∴OM=AF1,MF

16、=AF, ∴|OM|+|MF|==a=5, ∵e=, ∴c=2, ∴b=, ∴橢圓C的方程為=1. (2)設(shè)A(x1,y1),B(x2,y2), 聯(lián)立 消去y整理得 (1+5k2)x2+10mkx+5m2-25=0. ∴Δ>0,x1+x2=-,x1x2=, ∴y1+y2=k(x1+x2)+2m=,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=, ∵P(0,1),=-4, ∴(x1,y1-1)·(x2,y2-1)=x1x2+y1y2-(y1+y2)+1=-4, ∴+5=0,整理得3m2-m-10=0, 解得m=2或m=-(舍去).

17、 ∴直線l過定點(diǎn)(0,2). 2.(1)解 ∵當(dāng)M為橢圓C的短軸端點(diǎn)時(shí),△MF1F2的面積的最大值為1, ∴×2c×b=1,∴bc=1,∵e=,a2=b2+c2,∴a=,b=1,∴橢圓C的標(biāo)準(zhǔn)方程為+y2=1. (2)證明 設(shè)B(x1,y1),E(x2,y2),A(x1,-y1),且x1≠x2, ∵x==2,∴P(2,0),由題意知BP的斜率必存在,設(shè)BP:y=k(x-2),代入+y2=1得(2k2+1)x2-8k2x+8k2-2=0,由Δ>0得k2<,x1+x2=,x1·x2=. ∵x1≠x2∴AE斜率必存在,AE:y+y1=(x-x1), 由對(duì)稱性易知直線AE過的定點(diǎn)必在x軸上

18、,則當(dāng)y=0時(shí),得x=+x1== = =1,即在k2<的條件下,直線AE過定點(diǎn)(1,0). 3.(1)解 由題意可得解得 故橢圓C的方程為+y2=1. (2)證明 由題意可知直線l的斜率存在且不為0,設(shè)直線l的方程為y=kx+m(m≠0), 由消去y整理得(1+4k2)x2+8kmx+4(m2-1)=0, ∵直線l與橢圓交于兩點(diǎn), ∴Δ=64k2m2-16(1+4k2)(m2-1)=16(4k2-m2+1)>0. 設(shè)點(diǎn)P,Q的坐標(biāo)分別為(x1,y1),(x2,y2), 則x1+x2=,x1x2=, ∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)

19、+m2. ∵直線OP,l,OQ的斜率成等比數(shù)列, ∴k2== , 整理得km(x1+x2)+m2=0, ∴+m2=0, 又m≠0,所以k2=, 結(jié)合圖像(圖略)可知k=-,故直線l的斜率為定值. 4.解 (1)設(shè)橢圓的方程為mx2+ny2=1(m>0,n>0,m≠n), 橢圓C過點(diǎn)A,所以4m+n=1. ① 將y=x+3代入橢圓方程化簡(jiǎn)得(m+n)x2+6nx+9n-1=0. 因?yàn)橹本€l與橢圓C相切, 所以Δ=(6n)2-4(m+n)(9n-1)=0, ② 解①②可得m=,n=. 所以橢圓的標(biāo)準(zhǔn)方程為=1. (2)設(shè)點(diǎn)P(x1,y1),Q(x2,y2), 則有M

20、,N. 由題意可知PQ∥MN,所以kPQ=kMN=1. 設(shè)直線PQ的方程為y=x+t(-30, 所以 ③ kOM+kON=, 通分后可變形得到kOM+kON=, 將③式代入得kOM+kON==0. 當(dāng)t=0時(shí),直線PQ的方程為y=x,易得P(),Q(-,-),則M,N,所以kOM+kON==0. 所以O(shè)M,ON斜率之和為定值0. 5.解 (1)由y2=4x的焦點(diǎn)為(1,0)可知橢圓C的焦點(diǎn)為F1(-1,0),F2(1,0), 又點(diǎn)M-1,

21、在橢圓上,所以 解得 所以橢圓C的標(biāo)準(zhǔn)方程為+y2=1. (2)由題意可設(shè)直線l的方程為y=k(x-1),A(x1,y1),B(x2,y2),由 消去y,得(1+2k2)x2-4k2x+2k2-2=0,所以x1+x2=,x1x2=. 所以|AB|=. 設(shè)直線MN的方程為y-=k(x+1),M(x3,y3),N(x4,y4), 由 消去y,得(1+2k2)x2+(4k2+2k)x+(2k2+2k-1)=0,因?yàn)閤3=-1,所以x4=-,|MN|=|x3-x4|= . 因?yàn)樗倪呅蜯NBA為平行四邊形,所以|AB|=|MN|,即,k=-, 但是,直線l的方程y=-(x-1),即

22、x+2y-1=0過點(diǎn)M-1,,即直線AB與直線MN重合,不符合題意,所以直線l不存在. 6.解 (1)由題意,知F1(-,0),F2(,0),根據(jù)橢圓定義得|MF1|+|MF2|=2a, 所以2a= + =4, 所以a2=4,b2=a2-c2=1, 所以橢圓C的方程為+y2=1. (2)|OA|2+|OB|2為定值.設(shè)直線AB:y=kx+m(km≠0),A(x1,y1),B(x2,y2),由 消去y得 (1+4k2)x2+8kmx+4m2-4=0, 則Δ=(8km)2-16(m2-1)(4k2+1)>0, x1+x2=-,x1x2=, 因?yàn)閗1k2=k2,所以=k2, 即km(x1+x2)+m2=0(m≠0),解得k2=, 所以|OA|2+|OB|2=-2x1x2]+2=5, 所以|OA|2+|OB|2=5. 10

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!