高二數(shù)學(xué)下學(xué)期第一次月考試題 理 (3)
《高二數(shù)學(xué)下學(xué)期第一次月考試題 理 (3)》由會員分享,可在線閱讀,更多相關(guān)《高二數(shù)學(xué)下學(xué)期第一次月考試題 理 (3)(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
安徽省桐城中學(xué)2015—2016學(xué)年度第二學(xué)期高二年級第一次月考 數(shù)學(xué)試卷(理科) 一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的. 1.下列求導(dǎo)結(jié)果正確的是( ) A. B. C. D. 2.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=2xf′(e)+lnx,則f′(e)=( ?。? A.1 B.﹣1 C.﹣e﹣1 D.﹣e 3.已知函數(shù)f(x)和g(x)在區(qū)間[a,b]上的圖象如圖所示,那么下列說法正確的是( ?。? A.f(x)在a到b之間的平均變化率大于g(x)在a到b之間的平均變化率 B.f(x)在a到b之間的平均變化率小于g(x)在a到b之間的平均變化率 C.對于任意x0∈(a,b),函數(shù)f(x)在x=x0處的瞬時變化率總大于函數(shù)g(x)在x=x0處的瞬時變化率 D.存在x0∈(a,b),使得函數(shù)f(x)在x=x0處的瞬時變化率小于函數(shù)g(x)在x=x0處的瞬時變化率 4.曲線y=x2-2x在點 處的切線的傾斜角為( ) A.-1 B.45 C.-45 D.135 5.如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下列結(jié)論正確的是( ) A.在區(qū)間(-2,1)內(nèi)f(x)是增函數(shù) B.在區(qū)間(1,3)內(nèi)f(x)是減函數(shù) C.在區(qū)間(4,5)內(nèi)f(x)是增函數(shù) D.在x=2時,f(x)取極小值 6.已知函數(shù)f(x)=ax3-x2+x-5在(-∞,+∞)上既有極大值,也有極小值,則實數(shù)a的取值范圍為( ) A.a(chǎn)> B.a(chǎn)≥ C.a(chǎn)<且a≠0 D.a(chǎn)≤且a≠0 7.函數(shù)的圖象與軸所圍成的封閉圖形的面積為 ( ) A、 B、1 C、2 D、 8.若關(guān)于x的不等式x3-3x2-9x+2≥m對任意x∈[-2,2]恒成立,則m的取值范圍是( ). A.(-∞,7] B.(-∞,-20] C.(-∞,0] D.[-12,7] 9. 函數(shù)的的單調(diào)遞增區(qū)間是 ( ) A. B. C. D.和 10.在x=1處有極值10,則f(2)為 ( ) A.11 B.18 C.11或18 D.17或18 11.設(shè)f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),已知x2f′(x)+xf(x)=lnx,f(e)=,則下列結(jié)論正確的是( ?。? A.f(x)在(0,+∞)單調(diào)遞增 B.f(x)在(0,+∞)單調(diào)遞減 C.f(x)在(0,+∞)上有極大值 D.f(x)在(0,+∞)上有極小值 12.已知函數(shù)圖像上任意兩點、,滿足,則實數(shù)的取值范圍是( ) A.[0,2] B. C.(0,2) D. 二.填空題(本大題共4小題,每小題5分,共20分) 13.一質(zhì)點按規(guī)律s=2t3運動,則其在t=1時的瞬時速度為 m/s. 14.求值: .15.過點O(0,0)的直線l與曲線f(x)=x3-3x2+2x相切,則直線l的方程為__________________________ 16.設(shè)函數(shù)().若存在,則的取值范圍是 _________________ 三、解答題:本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟. 17. (10分)已知函數(shù)。 (1)當(dāng)時,求在處的切線方程; (2)若函數(shù),當(dāng)時,求的極值。 18.(12分)若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時,函數(shù)f(x)有極值-. (1)求函數(shù)的解析式; (2)若方程f(x)=k有3個不同的根,求實數(shù)k的取值范圍. 19 (12分)已知。 (1)求函數(shù)在上的最小值; (2)對一切,恒成立,求實數(shù)的取值范圍; 20. (12分)已知函數(shù)R . (1)若在定義域內(nèi)為增函數(shù),求的值. (2)若在上的最小值為,求的值. 21. (12分)設(shè)f(x)=xlnx,g(x)=x2﹣1. (1)求證:當(dāng)時, f(x)g(x) (2)若當(dāng)x≥1時,f(x)﹣mg(x)≤0恒成立,求實數(shù)m的取值范圍. 22. (12分)已知,其中為自然對數(shù)的底數(shù) (1)設(shè)(其中為的導(dǎo)函數(shù)),判斷在上的單調(diào)性 (2)若無零點,試確定的范圍 安徽省桐城中學(xué)2015--2016高二(下)第一次月考 數(shù)學(xué)(理)答題卷一.選擇題(本大題共12小題,每小題5分,共60分) 題號 1 2 3 4 5 6 7 8 9 10 11 12 選項 D C D D C C A B C B B A 二.填空題(本大題共4小題,每小題5分,共20分) 13. 6 14. 15.或_ 16. 三、解答題(本大題共6小題,共70分) 17 (本小題滿分10分) 解:(1)當(dāng),, 切點坐標(biāo)為,,。 根據(jù)直線的點斜式方程,切線方程為, 在處的切線方程。 (2)依題意得: ,;因為 解得,在上單調(diào)遞增,在上單調(diào)遞減。 ,無極大值。 18 (本小題滿分12分) 解:(Ⅰ)f′(x)=3ax2﹣b 由題意;,解得, ∴所求的解析式為 (Ⅱ)由(1)可得f′(x)=x2﹣4=(x﹣2)(x+2) 令f′(x)=0,得x=2或x=﹣2, ∴當(dāng)x<﹣2時,f′(x)>0,當(dāng)﹣2<x<2時,f′(x)<0,當(dāng)x>2時,f′(x)>0 因此,當(dāng)x=﹣2時,f(x)有極大值, 當(dāng)x=2時,f(x)有極小值, ∴函數(shù)的圖象大致如圖. 由圖可知:. 19.解: (1) 在上單調(diào)遞增, 在上單調(diào)遞減,在處取最小值, 。 (2)恒成立恒成立 記 在 20(本小題滿分12分) 解:(1) 又在定義域內(nèi)為增函數(shù) (2)由得或 在 (舍) 在 (舍) 在 綜上, 21(本小題滿分12分) 解:(1)記 在 在 即當(dāng)時, f(x)g(x) (2) 由(1)知時, f(x)g(x) 滿足題意 x≥1時,f(x)﹣mg(x)≤0恒成立等價于x≥1時,恒成立 記 令得 易知 , 在 不合題意 時,不合題意 綜上, 22(本小題滿分12分) 解:(1) 在 (2) 又在 存在唯一使且, 在 其中 又 無零點等價于 記 易知時,, 在,且 又- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高二數(shù)學(xué)下學(xué)期第一次月考試題 3 數(shù)學(xué) 學(xué)期 第一次 月考 試題
鏈接地址:http://kudomayuko.com/p-11822179.html