《(江蘇專用)2020版高考數(shù)學一輪復習 加練半小時 專題6 數(shù)列 第48練 數(shù)列小題綜合練 理(含解析)》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專用)2020版高考數(shù)學一輪復習 加練半小時 專題6 數(shù)列 第48練 數(shù)列小題綜合練 理(含解析)(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第48練 數(shù)列小題綜合練
[基礎(chǔ)保分練]
1.在數(shù)列{an}中,a1=-2,an+1=1-,則a2019的值為________.
2.已知數(shù)列{an}中,a3=2,a7=1,若為等差數(shù)列,則a11=________.
3.已知數(shù)列{an}的前n項和Sn=-an-n-1+2(n∈N*),則數(shù)列{2nan}的前100項的和為________.
4.已知數(shù)列{an}的通項公式為an=n2-kn,請寫出一個能說明“若{an}為遞增數(shù)列,則k≤1”是假命題的k的值________.
5.數(shù)列{an}滿足an+1+an=(-1)n·n,則數(shù)列{an}的前20項的和為________.
6.
2、已知數(shù)列{an}的通項公式an=n+,則|a1-a2|+|a2-a3|+…+|a99-a100|=________.
7.兩個等差數(shù)列{an}和{bn},其前n項和分別為Sn,Tn,且=,則=________.
8.已知等差數(shù)列{an}的前n項和為Sn,a5=5,S8=36,則數(shù)列的前n項和為________.
9.已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22,依此類推.記此數(shù)列為{an},則a2019=________.
10.已知數(shù)列{an}滿足:an-(-1)nan-1=n(
3、n≥2),記Sn為{an}的前n項和,則S40=________.
[能力提升練]
1.已知數(shù)列{an}中,an>0,a1=1,an+2=,a100=a96,則a2018+a3=________.
2.已知數(shù)列{an}滿足a1=1,(2n-1)an+1=(2n+1)an+1,bn=,Tn=b1+b2+…+bn,若m>Tn恒成立,則m的最小值為________.
3.已知每項均大于零的數(shù)列{an}中,首項a1=1且前n項和Sn滿足Sn-Sn-1=2(n∈N*且n≥2),則a81=________.
4.(2019·常州調(diào)研)若三個非零且互不相等的實數(shù)x1,x2,x3成等差數(shù)列且滿足+=
4、,則稱x1,x2,x3成一個“β等差數(shù)列”.已知集合M={x||x|≤100,x∈Z},則由M中的三個元素組成的所有數(shù)列中,“β等差數(shù)列”的個數(shù)為________.
5.對于數(shù)列{an},定義Hn=為{an}的“優(yōu)值”,現(xiàn)在已知某數(shù)列{an}的“優(yōu)值”Hn=2n+1,記數(shù)列{an-kn}的前n項和為Sn,若Sn≤S5對任意的正整數(shù)n恒成立,則實數(shù)k的取值范圍是________.
6.等差數(shù)列{an}的前n項和為Sn,正數(shù)數(shù)列{bn}是等比數(shù)列,且滿足a2=5,b1=1,b3+S3=19,a7-2b=a3,數(shù)列的前n項和為Tn,若對于一切正整數(shù)n,Tn
5、___.
答案精析
基礎(chǔ)保分練
1. 2. 3.5050
4.(1,3)內(nèi)任意一個實數(shù)均可 5.-100
6.162 7.
8. 9.4
10.440
解析 由an-(-1)nan-1=n(n≥2)可得:
當n=2k時,有a2k-a2k-1=2k, ①
當n=2k-1時,有a2k-1+a2k-2=2k-1, ②
當n=2k+1時,有a2k+1+a2k=2k+1, ③
①+②得a2k+a2k-2=4k-1,
③-①得a2k+1+a2k-1=1,則
S40=(a1+a3+a5+a7+…+a39)
6、+(a2+a4+a6+a8+…+a40)=1×10+(7+15+23+…)=10+7×10+×8=440.
能力提升練
1.
解析 ∵a1=1,an+2=,
∴a3==.
∵a100=a96,∴a96=a100==,整理得a+a96-1=0,
解得a96=或a96=,
∵an>0,∴a96=.
∴a98==,
a100==,…,
a2018==.
∴a2018+a3=+=.
2. 3.640 4.50 5.
6.10
解析 設(shè){an}的公差為d,{bn}的公比為q,
∵a2=5,b1=1,b3+S3=19,
a7-2b=a3,
∴
解得
∴an=2n+1,bn=2n-1,
∴=(2n+1)n-1,
Tn=3×0+5×1+…+
(2n+1)n-1,
Tn=3×1+5×2+
7×3+…+(2n-1)n-1+
(2n+1)n,
相減得Tn=3+2-(2n+1)·n=3+2×-(2n+1)n,
Tn=6+4-(2n+1)n-1
=10-<10,
∵Tn