4、f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=ex(x+1),給出下列說(shuō)法:①當(dāng)x>0時(shí),f(x)=e-x(x-1);②函數(shù)f(x)有3個(gè)零點(diǎn);③?x1,x2∈R,|f(x1)-f(x2)|<2.其中正確說(shuō)法的個(gè)數(shù)是 ( )
A.3 B.2 C.1 D.0
圖Z1-1
11.如圖Z1-1所示,圓形紙片的圓心為O,半徑為5,該紙片上的等邊三角形ABC的中心為O.D,E,F為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱錐.當(dāng)△ABC的邊長(zhǎng)
5、變化時(shí),所得三棱錐體積的最大值為 .?
12.[2018·宜昌一中月考] 對(duì)于定義域?yàn)镽的函數(shù)f(x),若滿足:(1)f(0)=0;(2)當(dāng)x∈R,且x≠0時(shí),總有xf'(x)>0;(3)當(dāng)x1<0
6、明:當(dāng)x∈(1,+∞)時(shí),10時(shí),f(x)+x≥0恒成立,求a的取值范圍.
7、
7
專題集訓(xùn)(一)
1.A [解析]f'(x)=3x2-6x+3=3(x-1)2,當(dāng)x=1時(shí),導(dǎo)函數(shù)值為0,但當(dāng)x<1或x>1時(shí),導(dǎo)函數(shù)值均大于0,所以x=1不是函數(shù)的極值點(diǎn),所以函數(shù)極值點(diǎn)的個(gè)數(shù)為0.
2.A [解析] 由于函數(shù)f(x)的圖像是連續(xù)不間斷的一條曲線,故只需f(x)的兩個(gè)極值異號(hào).f'(x)=3x2-3,由f'(x)=0,解得x=±1,只需f(-1)·f(1)<0,即(a+2)(a-2)<0,解得a∈(-2,2).
3.B [解析] 令g(x)=exf(x),則g'(x)=exf(x)+exf'(x)=ex[f(x)+f'(x)],由f'(x)+f(x)>
8、0,可得g'(x)>0,故函數(shù)g(x)在R上單調(diào)遞增,又由f(0)=1,得g(0)=1,所以不等式exf(x)>1的解集為(0,+∞),故選B.
4.[-2,2] [解析]f'(x)=ex[x2+(-a+2)x-a+2],∵ex>0恒成立,∴f(x)在R上單調(diào)遞增等價(jià)于x2+(-a+2)x-a+2≥0恒成立,∴(-a+2)2-4(-a+2)≤0,
∴-2≤a≤2,即實(shí)數(shù)a的取值范圍是[-2,2].
5.300 [解析] 設(shè)倉(cāng)庫(kù)的長(zhǎng)為xm,則寬為(20-x)m,設(shè)倉(cāng)庫(kù)的容積為Vm3,
則V=x(20-x)·3=-3x2+60x,V'=-6x+60.
由V'=0得x=10,∴當(dāng)0
9、0時(shí),V'>0;當(dāng)x>10時(shí),V'<0.故當(dāng)x=10時(shí),V取得最大值300.
6.A [解析]f'(x)=3x2-3=3(x-1)(x+1),由f'(x)=0,得x=±1,
所以易知x=1和x=-1為函數(shù)f(x)的極值點(diǎn).因?yàn)閒(-3)=-19,f(-1)=1,f(1)=-3,f(2)=1,
所以在區(qū)間[-3,2]上,f(x)max=1,f(x)min=-19.
又由題設(shè)知在區(qū)間[-3,2]上,f(x)max-f(x)min≤t,則t≥20,所以t的最小值是20.
7.D [解析]f'(x)=ax2+ax-2a=a(x+2)(x-1),要使函數(shù)f(x)的圖像經(jīng)過(guò)四個(gè)象限,則f(-2)
10、f(1)<0,即163a+156a+1<0,解得-650,h(x)單調(diào)遞增;
當(dāng)x∈(-3,2)時(shí),h'(x)<0,h(x)單調(diào)遞減;
當(dāng)x∈(2,+∞)時(shí),h'(x)>0,h(x)單調(diào)遞增.
h(-3)=272,h(2)=-223,作出h(x)的圖像如圖所示,
由圖可得實(shí)數(shù)a的取值范圍是-223,272.
9.D [解析]∵函數(shù)f(x)=ex(sinx-cosx
11、),
∴f'(x)=(ex)'(sinx-cosx)+ex(sinx-cosx)'=2exsinx.
當(dāng)x∈(2kπ+π,2kπ+2π)(k=0,1,2,…,1007)時(shí),f'(x)<0,f(x)單調(diào)遞減;
當(dāng)x∈(2tπ,2tπ+π)(t=0,1,…,1006,1007)時(shí),f'(x)>0,f(x)單調(diào)遞增.
故當(dāng)x=2kπ+2π(k=0,1,2,…,1006)時(shí),f(x)取得極小值,
其極小值為f(2kπ+2π)=e2kπ+2π[sin(2kπ+2π)-cos(2kπ+2π)]=e2kπ+2π×(0-1)=-e2kπ+2π(k=0,1,2,…,1006),
∴函數(shù)f(x)的各極
12、小值之和S=-e2π-e4π-e6π-…-e2012π-e2014π=-e2π[1-(e2π)1007]1-e2π=-e2π(1-e2014π)1-e2π.故選D.
10.A [解析] 對(duì)于①,當(dāng)x>0時(shí),-x<0,所以f(-x)=e-x(-x+1),又f(x)是定義在R上的奇函數(shù),所以-f(x)=e-x(-x+1),因此當(dāng)x>0時(shí),f(x)=e-x(x-1),故①中說(shuō)法正確.
對(duì)于②,當(dāng)x<0時(shí),由f(x)=ex(x+1)=0,得x=-1;當(dāng)x>0時(shí),由f(x)=e-x(x-1)=0,得x=1.
又f(0)=0,所以函數(shù)f(x)有3個(gè)零點(diǎn),故②中說(shuō)法正確.
對(duì)于③,當(dāng)x<0時(shí),f'(
13、x)=ex(x+2),
所以當(dāng)x<-2時(shí),f'(x)<0,f(x)單調(diào)遞減;當(dāng)-20,f(x)單調(diào)遞增.
易知當(dāng)x→-∞時(shí),f(x)→0,
所以f(-2)=-e-2≤f(x)0時(shí),f'(x)=e-x(2-x),
所以f(x)在(0,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減,所以當(dāng)x=2時(shí),f(x)取得最大值f(2)=e-2,又當(dāng)x→+∞時(shí),f(x)→0,
f(x)>e-0×(0-1)=-1,所以當(dāng)x>0時(shí),-1
14、=(-1,1),
所以?x1,x2∈R,|f(x1)-f(x2)|<2,故③中說(shuō)法正確.
綜上可得,①②③中說(shuō)法都正確.故選A.
11.415 [解析] 設(shè)△ABC的邊長(zhǎng)為a,易知00,當(dāng)43
15、唯一的極大值點(diǎn),也是最大值點(diǎn),所以當(dāng)a=43時(shí),三棱錐的體積最大,最大值為13×34×(43)2×25-533×43=43×5=415.
12.①④ [解析] 對(duì)于“偏對(duì)稱函數(shù)”f(x),由(2)可知,當(dāng)x>0時(shí),f'(x)>0,當(dāng)x<0時(shí),f'(x)<0,
∴f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.
∵f2(x)=ln(x2+1-x)=ln1x2+1+x在R上單調(diào)遞減,不滿足條件(2),
∴f2(x)不是“偏對(duì)稱函數(shù)”.
∵f3(π)=f3(2π)=0,∴f3(x)在(0,+∞)上不單調(diào),故f3(x)不滿足條件(2),
∴f3(x)不是“偏對(duì)稱函數(shù)”.
由(
16、3)可知,當(dāng)x1<0時(shí),f(x1)0,x<0,
∴h(x)在(-∞,0)上單調(diào)遞增,故h(x)0時(shí),ex>1,∴f'4(x)>2
17、×1-142-98=0,
∴f4(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,滿足條件(2);
當(dāng)x<0時(shí),令m(x)=f4(x)-f4(-x)=e2x-e-2x+e-x-ex-2x,
則m'(x)=2e2x+2e-2x-e-x-ex-2=2(e2x+e-2x)-(e-x+ex)-2,
令e-x+ex=t,則t≥2,于是m'(x)=n(t)=2t2-t-6=2t-142-498≥2×2-142-498=0,
∴m(x)在(-∞,0)上單調(diào)遞增,
∴m(x)
18、f4(x)為“偏對(duì)稱函數(shù)”.
故答案為①④.
13.解:(1)函數(shù)f(x)=lnx-x+1的導(dǎo)函數(shù)f'(x)=1x-1,
由f'(x)>0,可得01.
故f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減.
(2)證明:由(1)可得f(x)在(1,+∞)上單調(diào)遞減,
所以當(dāng)x∈(1,+∞)時(shí),f(x)0,得0e,
∴f(x)的單調(diào)遞增區(qū)間是(
19、0,e),單調(diào)遞減區(qū)間是(e,+∞).
(2)對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,
等價(jià)于m≤2lnx+x+3x對(duì)一切x∈(0,+∞)恒成立.
令h(x)=2lnx+x+3x,則h'(x)=2x+1-3x2=(x+3)(x-1)x2(x>0),
當(dāng)x∈(0,1)時(shí),h'(x)<0,即h(x)在(0,1)上單調(diào)遞減,
當(dāng)x∈(1,+∞)時(shí),h'(x)>0,即h(x)在(1,+∞)上單調(diào)遞增,∴h(x)min=h(1)=4,
∴m≤4,即實(shí)數(shù)m的取值范圍是(-∞,4].
(3)證明:對(duì)一切x∈(0,+∞),lnx<2xe-x2ex,等價(jià)于對(duì)一切x∈(0,+∞),lnx
20、x<2e-xex,即f(x)<2e-xex.
由(1)知f(x)≤f(e)=1e(當(dāng)x=e時(shí)取等號(hào)).
令φ(x)=2e-xex,x>0,則φ'(x)=x-1ex,易知φ(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
∴φ(x)≥φ(1)=1e(當(dāng)x=1時(shí)取等號(hào)),∴f(x)<φ(x)對(duì)一切x∈(0,+∞)都成立,
即對(duì)一切x∈(0,+∞),都有l(wèi)nx<2xe-x2ex成立.
15.解:(1)證法一:f'(x)=ex-2x-a,令m(x)=ex-2x-a,則m'(x)=ex-2.
令m'(x)<0,得x0,得x>ln2.
∴f'(x)在(-∞,l
21、n2)上單調(diào)遞減,在(ln2,+∞)上單調(diào)遞增,
∴f'(x)min=f'(ln2)=2-2ln2-a,
∴當(dāng)a<2-2ln2時(shí),f'(x)min>0,
∴f'(x)的圖像在x軸上方,∴f'(x)沒(méi)有零點(diǎn).
證法二:f'(x)=ex-2x-a,由f'(x)=0,得ex=2x+a,令g(x)=ex,φ(x)=2x+a,則g'(x)=ex.
f'(x)沒(méi)有零點(diǎn),即函數(shù)g(x)與φ(x)的圖像無(wú)交點(diǎn).
若直線φ(x)=2x+a與g(x)的圖像切于點(diǎn)P(x0,y0),則ex0=2,解得x0=ln2,
∴P(ln2,2),代入φ(x)=2x+a得a=2-2ln2,又a<2-2ln2,
∴直線φ(x)=2x+a與g(x)的圖像無(wú)交點(diǎn),即f'(x)沒(méi)有零點(diǎn).
(2)當(dāng)x>0時(shí),f(x)+x≥0,即ex-x2-ax+x-1≥0,
即ax≤ex-x2+x-1,即a≤exx-x-1x+1.
令h(x)=exx-x-1x+1(x>0),則h'(x)=(x-1)(ex-x-1)x.
當(dāng)x>0時(shí),ex-x-1>0恒成立,
令h'(x)<0,解得00,解得x>1.
∴h(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
∴h(x)min=h(1)=e-1,∴a的取值范圍是(-∞,e-1].