數(shù)控銑床二維精密工作臺(tái)設(shè)計(jì)含13張CAD圖
數(shù)控銑床二維精密工作臺(tái)設(shè)計(jì)含13張CAD圖,數(shù)控,銑床,二維,精密,工作臺(tái),設(shè)計(jì),13,cad
報(bào)告用紙 第10頁(yè) 共10頁(yè)
用三維探頭球測(cè)量5軸數(shù)控機(jī)床的誤差
W. T. Lei and Y. Y. Hsu
摘要
本文對(duì)五坐標(biāo)數(shù)控機(jī)床提出了一種新的測(cè)量裝置和相應(yīng)的精確度測(cè)試的方法。這種裝置名為探頭球,包括一個(gè)三維探頭,一個(gè)延長(zhǎng)塊和一方帶有測(cè)量頭的底板。三維探頭有一個(gè)標(biāo)準(zhǔn)錐度,并有能力完成三自由度位移測(cè)量。延長(zhǎng)塊的自由端有一個(gè)插口。一個(gè)永磁體集成在插口上以致于延長(zhǎng)塊和測(cè)量球可在磁力作用下連接在一起。在安裝完探頭球設(shè)備以后,五軸機(jī)床的該運(yùn)動(dòng)鏈就關(guān)閉了。為了5軸機(jī)床測(cè)量的準(zhǔn)確性,球測(cè)試表面曲線被定義為工具的路徑。該工具的取向是指在表面正常的方向。該球形表面的中心恰好測(cè)試檢測(cè)球的中心。隨著這條路徑和方向投入數(shù)控控制器,三維探頭相對(duì)測(cè)量球的球形測(cè)試表面動(dòng)作。相對(duì)運(yùn)動(dòng)的整體定位誤差被三維測(cè)量探頭檢測(cè)出來(lái),用來(lái)證明5軸機(jī)床的容積準(zhǔn)確性。
1 引言
五軸數(shù)控機(jī)床廣泛用于加工工件的自由曲面。除了傳統(tǒng)的三線性定位軸, 5軸機(jī)床一般還有兩個(gè)旋轉(zhuǎn)軸。所有五個(gè)軸是可以同時(shí)控制來(lái)最優(yōu)化調(diào)整刀具對(duì)工件表面的路徑。5軸機(jī)床的技術(shù)優(yōu)勢(shì)的包括更高的金屬去除率,改善表面光潔度,并顯著降低切削時(shí)間。
在過(guò)去幾十年里,許多工作的重點(diǎn)放在幾何誤差或熱變形對(duì)機(jī)床精度的影響上。許多測(cè)量設(shè)備已開(kāi)發(fā)來(lái)衡量個(gè)別的錯(cuò)誤部分,并把一個(gè)多軸機(jī)床作為一個(gè)整體來(lái)測(cè)精度。最強(qiáng)大,最節(jié)省時(shí)間的設(shè)備是六自由度激光測(cè)量裝置,可用于在同一時(shí)間測(cè)量直線運(yùn)動(dòng)馬車六個(gè)運(yùn)動(dòng)誤差的組成部分。此外,雙球桿( DBB )常被用來(lái)確定了飼料驅(qū)動(dòng)系統(tǒng)的動(dòng)態(tài)誤差,如增益不匹配,空轉(zhuǎn)和粘滑。為了擴(kuò)大DBB測(cè)量范圍,所謂的激光球桿已經(jīng)開(kāi)發(fā)為能測(cè)量三維工作空間定位誤差的裝置。另一方面,網(wǎng)格編碼特別適合于測(cè)量銳角轉(zhuǎn)角的動(dòng)態(tài)路徑錯(cuò)誤。雖然這些測(cè)量裝置已成功地用來(lái)測(cè)量三軸數(shù)控機(jī)床精度,沒(méi)有測(cè)量裝置可用來(lái)測(cè)試五軸數(shù)控機(jī)床體積準(zhǔn)確性。本文提出了一種新的測(cè)量裝置,探頭球,即能夠測(cè)量5軸機(jī)床的總體定位誤差。
2 探頭測(cè)量裝置
2.1設(shè)計(jì)特點(diǎn)
探頭球如圖1所示。它包括一個(gè)三維探頭,一個(gè)延長(zhǎng)塊和一方帶有測(cè)量頭的底板。三維探頭有標(biāo)準(zhǔn)錐度的刀柄,并能夠測(cè)量三自由度偏差。三維探頭采用光電編碼器的位移傳感器。其他位移傳感器,如線性可變位移傳感器(LVDT型 )或電容傳感器也是可以的。伸長(zhǎng)桿的自由端有個(gè)孔,它和測(cè)量球形成了球窩接頭。一個(gè)永磁體和孔結(jié)合在一起使伸長(zhǎng)桿和測(cè)量球在磁力的作用下連接在了一起。底板被固定在5軸機(jī)床的轉(zhuǎn)盤上用來(lái)調(diào)整方向。
圖1 探頭球測(cè)量裝置
為了測(cè)量工具和工件之間的定位誤差,探頭安在刀架上,底板固定在轉(zhuǎn)盤上。在安裝完探頭球測(cè)量裝置,該5軸機(jī)床的運(yùn)動(dòng)鏈就因此關(guān)閉了。測(cè)試路徑可能是球測(cè)試表面的任何曲線。刀具方向是以曲面法線的方向定義的。該球形測(cè)試表面的中心和測(cè)量球的中心重合。球面半徑為三維探頭球的原點(diǎn)和測(cè)量球中心之間的距離。伸長(zhǎng)桿根據(jù)測(cè)試范圍有不同的長(zhǎng)度。把方向和路徑輸入到數(shù)控控制器,三維探頭就以測(cè)量球?yàn)橹行脑谇蛐螠y(cè)試表面上運(yùn)動(dòng)??傮w定位誤差就這樣被三維探頭球測(cè)量出來(lái)了。
由于球面對(duì)稱性質(zhì),它有利于裝入測(cè)量球,因此,測(cè)試表面的中心和轉(zhuǎn)盤軸就有一個(gè)偏差??紤]到這點(diǎn),在測(cè)量觀察中測(cè)量球應(yīng)該跟底盤一起旋轉(zhuǎn),這樣5軸才能同時(shí)被驅(qū)動(dòng)。因此,測(cè)量誤差包括了來(lái)自所有軸的誤差。測(cè)量球的偏移和伸長(zhǎng)桿的長(zhǎng)度決定了驅(qū)動(dòng)軸的測(cè)試范圍。
為了確保探頭球裝置本身并不是一個(gè)部分誤差來(lái)源,有必要在它的使用之前進(jìn)行精確的校準(zhǔn)。這些程序包括初始化三維探頭傳感器和在坐標(biāo)測(cè)量機(jī)上對(duì)測(cè)量球準(zhǔn)確定位測(cè)試。在精度測(cè)試中,三維探頭的輸出代表了測(cè)量球相對(duì)于球形測(cè)試表面的偏差。強(qiáng)調(diào)一點(diǎn),探頭球裝置并不能在工件坐標(biāo)系中測(cè)量定位誤差,雖然似乎能。
2.2測(cè)試路徑
如上文所說(shuō),測(cè)試表面可能是球形面上的任何曲面。圖2表示了一些測(cè)試路徑。路徑A沿著測(cè)試表面的經(jīng)線。在這個(gè)路徑上,只有A,Y和Z軸動(dòng)了。A 軸是唯一的主動(dòng)軸,而Y和Z軸是從動(dòng)軸。換句話說(shuō),A軸動(dòng)了,Y和Z軸才跟著動(dòng)的。這個(gè)路徑適合測(cè)試A軸的靜態(tài)和動(dòng)態(tài)誤差。路徑C沿著球形測(cè)試表面的赤道方向。這個(gè)情況下,C軸是主動(dòng)軸,X和Z為從動(dòng)軸。同樣,路徑C適合測(cè)C軸的誤差。路徑F是測(cè)試球形表面的螺旋樣曲線,它涵蓋整個(gè)球形體積。所有機(jī)器軸可同時(shí)在這種情況下驅(qū)動(dòng)。測(cè)量誤差提供足夠的信息來(lái)描述目標(biāo)5軸機(jī)床的總體體積誤差。路徑S是上球面測(cè)試表面上的一個(gè)圓圈。在這種情況下,所有軸往復(fù)驅(qū)動(dòng)。因此路徑S很適合測(cè)試旋轉(zhuǎn)A和C軸的動(dòng)態(tài)誤差。
圖2 測(cè)試路徑
測(cè)量球有很多用途。如果測(cè)總體定位誤差,那么選路徑F。如果它是用來(lái)識(shí)別或估算單軸錯(cuò)誤組成部分,最好是選擇簡(jiǎn)單的測(cè)試路徑,如路徑A或C ,因?yàn)橹挥杏邢薜闹饕M成部分影響測(cè)量結(jié)果。下面,將得出測(cè)試路徑和目標(biāo)5軸機(jī)床的運(yùn)動(dòng)之間的詳細(xì)關(guān)系。
3 運(yùn)動(dòng)變換
由于測(cè)試路徑是在工件坐標(biāo)系中,數(shù)控輸入三維探頭球的準(zhǔn)確性測(cè)量與5軸機(jī)床運(yùn)動(dòng)學(xué)是獨(dú)立的。該機(jī)器結(jié)構(gòu)的特點(diǎn)是對(duì)X和Y表兩自由度一體化,如圖3所示。坐標(biāo)系如圖4所示。
圖3 5軸銑床
圖4 5軸銑床坐標(biāo)系
機(jī)器坐標(biāo)系到工件坐標(biāo)系的轉(zhuǎn)變是傳統(tǒng)所謂的先進(jìn)轉(zhuǎn)變。另一方面,工件坐標(biāo)系到機(jī)器坐標(biāo)系的轉(zhuǎn)變稱為落后轉(zhuǎn)變。5軸機(jī)床的先進(jìn)轉(zhuǎn)變總是可以解決的而且只有一個(gè)解決辦法。相反,考慮到旋轉(zhuǎn)軸的定位落后轉(zhuǎn)變有兩種解決方法。下面,在均勻變換矩陣的幫助下我們將得出機(jī)器坐標(biāo)系和工件坐標(biāo)系的關(guān)系。
假設(shè)(Xm,Ym,Zm)為機(jī)器坐標(biāo)系中的一點(diǎn),而這點(diǎn)在工件坐標(biāo)系這坐標(biāo)為(Xw,Yw,Zw)。為了實(shí)現(xiàn)先進(jìn)轉(zhuǎn)變,首先機(jī)器坐標(biāo)系的原點(diǎn)以矢量(X1,Y1,Z1)移動(dòng)到兩轉(zhuǎn)軸的交點(diǎn)上,接著A軸以θa轉(zhuǎn)動(dòng)C軸以θc轉(zhuǎn)動(dòng)使轉(zhuǎn)盤垂直。最后,機(jī)床坐標(biāo)系以矢量(X0,Y0,Z0)移動(dòng)到工件坐標(biāo)系上。變換過(guò)程可表示為
因?yàn)榭倳?huì)有兩種解決辦法后,落后的轉(zhuǎn)變,是必要的戰(zhàn)略選擇一個(gè)合適的一個(gè)。一個(gè)簡(jiǎn)單的標(biāo)準(zhǔn)是推動(dòng)能源需要。一個(gè)與移動(dòng)距離較小,將被選中。當(dāng)然碰撞的可能性,必須予以考慮。
4 測(cè)試路徑和誤差模型
4.1在工件坐標(biāo)系中的測(cè)試路徑
如上所述,探頭球設(shè)備使用球形測(cè)試表面上的任何路徑測(cè)試5軸機(jī)床的精度,下面將得出工件坐標(biāo)系中測(cè)試路徑的描述。
圖5表示了定義路徑F的參數(shù),為了盡量減少測(cè)試時(shí)間,路徑F上升角度設(shè)定為90 °大意是,該工具到達(dá)頂端的位置后,C軸旋轉(zhuǎn)360 °。工件坐標(biāo)系中的路徑描述是這樣的:
其中Rw是球形測(cè)試表面的半徑,θ是圓形角。類似的,別的上升角的路徑描述也能同樣得到。
圖5路徑F的參數(shù)
4.2在軸坐標(biāo)系中的測(cè)試路徑
由于落后的運(yùn)動(dòng)轉(zhuǎn)變,工件坐標(biāo)系的測(cè)試路徑和方向轉(zhuǎn)化為機(jī)器或軸坐標(biāo)。圖 6和圖7顯示軸命令值路徑S和f。在案件路徑F中,旋轉(zhuǎn)軸C和A線性驅(qū)動(dòng),而其他軸之后從動(dòng)保持運(yùn)動(dòng)鏈關(guān)閉。在路徑S上,所有的軸來(lái)回動(dòng),最后回到起點(diǎn)。反轉(zhuǎn)點(diǎn)的速度可以查明清楚。正如人們所知的雙球桿測(cè)量技術(shù),這些速度反轉(zhuǎn)點(diǎn)提供必要的條件,顯示動(dòng)態(tài)運(yùn)動(dòng)的錯(cuò)誤,如粘滑,空轉(zhuǎn)和反彈。圖8中,速度反轉(zhuǎn)點(diǎn)出現(xiàn)在A軸的180°和C 軸的120°和210°。可以看出,有些軸也有其速度扭轉(zhuǎn)在同一時(shí)間,例如軸C和X。你還可以使用雙球桿查明動(dòng)態(tài)誤差的線性軸頭。從探頭球裝置的測(cè)試結(jié)果,可確定以后旋轉(zhuǎn)軸A或C的動(dòng)態(tài)誤差。
圖6 測(cè)試路徑F命令值
圖7 測(cè)試路徑S命令值
4.3誤差模型
解釋探頭球的測(cè)量結(jié)果,有必要建立一個(gè)探頭球測(cè)量的誤差模型。模型描述的錯(cuò)誤之間的關(guān)系總體定位誤差測(cè)量的誤差來(lái)源的是5軸機(jī)床運(yùn)動(dòng)鏈每個(gè)組成部分。在同質(zhì)變換矩陣的方法為這一理論的任務(wù)提供了一個(gè)很好的方法。幾何組成部分可分為兩類。第一個(gè)是與一個(gè)不正確的運(yùn)動(dòng)伺服控制軸。第二個(gè)是有關(guān)錯(cuò)誤的鏈接組成部分。對(duì)于每一個(gè)線性或旋轉(zhuǎn)軸,有一般6運(yùn)動(dòng)中的錯(cuò)誤熱媒。錯(cuò)誤的鏈接部分包括軸垂直度誤差和偏移誤差塊部件,如主軸和旋轉(zhuǎn)塊。坐標(biāo)框架中定義圖3 。錯(cuò)誤模型可通過(guò)連續(xù)的產(chǎn)品的所有HTMs每個(gè)運(yùn)動(dòng)的組成部分。工件坐標(biāo)系和參考坐標(biāo)系的關(guān)系是
rTw=rTyyTxxTaaTccTttTw
其中指數(shù)w, t, c, a, x, y, r分別代表工件,轉(zhuǎn)盤,C軸,A軸, X軸, Y軸和參考系的縮寫。
同樣,探頭坐標(biāo)系和參考坐標(biāo)系的關(guān)系是
rTp=rTzzTssThhTp
其中p, h, s, z分別代表探頭,刀柄,主軸塊和Z軸的縮寫。
5 實(shí)驗(yàn)結(jié)果
圖8表示用三維探頭球測(cè)量目標(biāo)5軸銑床的精度。圖9,10,11表示幾個(gè)測(cè)試結(jié)果。圖10顯示靜力試驗(yàn)的結(jié)果,當(dāng)預(yù)先確定好的點(diǎn)位置確定后進(jìn)行誤差采樣。圖11和圖12顯示動(dòng)態(tài)試驗(yàn)的結(jié)果,當(dāng)軸按輸入的進(jìn)給量運(yùn)動(dòng)時(shí)進(jìn)行誤差采樣。由于A軸不正常的動(dòng)態(tài)旋轉(zhuǎn),隨著進(jìn)給速度的增加,Y方向誤差急劇增加。
圖8 探頭球裝置在測(cè)量
圖9 路徑F的靜態(tài)測(cè)量誤差
圖10 進(jìn)給量為30 mm/min時(shí),路徑F的動(dòng)態(tài)測(cè)量誤差
圖11 進(jìn)給量為150 mm/min時(shí),路徑F的動(dòng)態(tài)測(cè)量誤差
在另一項(xiàng)研究開(kāi)展旨在確定和估計(jì)所有的誤差項(xiàng),三維探頭球的測(cè)量數(shù)據(jù)結(jié)果表明,5軸銑床的主要誤差來(lái)源是兩個(gè)旋轉(zhuǎn)軸的垂直度誤差。
6 總結(jié)
本文提出了一種新的測(cè)量裝置稱為三維探頭球。它能夠測(cè)量五坐標(biāo)數(shù)控機(jī)床的總體定位誤差。誤差測(cè)量的原則是閉鏈測(cè)量。在測(cè)試的準(zhǔn)確性,三維探頭球目標(biāo)5軸機(jī)床運(yùn)動(dòng)鏈的關(guān)閉。由于運(yùn)動(dòng)的限制,適合測(cè)試路徑的路徑為球形測(cè)試表面。測(cè)量定位誤差是指在調(diào)查坐標(biāo)系和可轉(zhuǎn)化為參考坐標(biāo)系,目標(biāo)5軸機(jī)床預(yù)測(cè)的準(zhǔn)確性。隨著三維探頭球可用,進(jìn)一步的調(diào)查,目的是提高機(jī)床的精度,包括估計(jì)和補(bǔ)償?shù)膸缀握`差。
References
[1] E.E. Sprow, Manuf. Eng. 111 (5) (1993) 55.
[2] V.B. Kreng, C.R. Liu, C.N. Chu, Int. J. Adv. Manuf. Technol. 9(1994) 79.
[3] V.S.B. Kiridena, P.M. Ferreira, Int. J. Mach. Tools Manuf. 34 (1)(1994) 85.
[4] V.S.B. Kiridena, P.M. Ferreira, Int. J. Mach. Tools Manuf. 33 (3)(1993) 417.
[5] A.K. Srivastava, S.C. Veldhuis, M.A. Elbestawit, Int. J. Mach. ToolsManuf. 35 (9) (1995) 1321.
[6] K. Lau, Q. Ma, X. Chu, Y. Liu, S. Olson, Technical Reportof Automated Precision Inc., Gaithersburg, MD 20879, USA,2002.
[7] H. Pahk, Y.S. Kim, H.H. Moon, Int. J. Mach. Tools Manuf. 37 (11)(1997) 1583.
[8] N. Srinivasa, J.C. Ziegert, Prec. Eng. 19 (2/3) (1996) 112.
[9] K. Yoshiak, et al., Japan/USA Symp. Flex. Automat. ASME 2 (1996)1202.
[10] A.H. Slocum, Precision Machine Design, Prentice-Hall, Englewood Cliffs, NJ, 1992.
10
2011 IEEE International Conference on Robotics and Automation Shanghai International Conference Center May 9-13, 2011, Shanghai, China 978-1-61284-385-8/11/$26.00 ?2011 IEEE 6051 6052 6053 6054 6055 6056 6057 6058 編號(hào):
設(shè)計(jì)(XX)說(shuō)明書
題 目: 數(shù)控銑床二維精密
工作臺(tái)設(shè)計(jì)
院 (系):
專 業(yè):
學(xué)生姓名:
學(xué) 號(hào):
指導(dǎo)教師:
職 稱:
題目類型:¨理論研究 ¨實(shí)驗(yàn)研究 t工程設(shè)計(jì) ¨工程技術(shù)研究 ¨軟件開(kāi)發(fā)
20XX年5月23日
報(bào)告用紙
摘 要
數(shù)控銑床是重要的機(jī)械加工裝備,在制造業(yè)中占有重要的地位,對(duì)國(guó)民經(jīng)濟(jì)的發(fā)展起著重要作用。其中,二維精密工作臺(tái)是數(shù)控銑床的關(guān)鍵部件,二維精密工作臺(tái)對(duì)數(shù)控銑床的加工精度和產(chǎn)品質(zhì)量有著重要的影響,進(jìn)行數(shù)控銑床二維精密工作臺(tái)設(shè)計(jì)具有重要的經(jīng)濟(jì)價(jià)值與社會(huì)意義。
本設(shè)計(jì)的主要任務(wù)是研究數(shù)控銑床二維精密工作臺(tái)主要結(jié)構(gòu),主要包括工作臺(tái)的結(jié)構(gòu)設(shè)計(jì)以及電機(jī)驅(qū)動(dòng)電路的設(shè)計(jì)。
工作臺(tái)結(jié)構(gòu)設(shè)計(jì)的原則是參考現(xiàn)有的數(shù)控銑床工作臺(tái)的結(jié)構(gòu),在實(shí)現(xiàn)工作臺(tái)的強(qiáng)度、剛度、尺寸等實(shí)用要求的同時(shí)盡量實(shí)現(xiàn)結(jié)構(gòu)簡(jiǎn)化及優(yōu)化。設(shè)計(jì)的步驟是首先確定總體尺寸,主要參考沈陽(yáng)機(jī)床廠卓越型數(shù)控銑床的總體尺寸。并采用solidworks軟件進(jìn)行計(jì)算機(jī)輔助設(shè)計(jì),利用模型進(jìn)行模擬裝配和干涉檢查。其次,在具體結(jié)構(gòu)設(shè)計(jì)上盡量選著供應(yīng)商的標(biāo)準(zhǔn)件,減少對(duì)機(jī)加工的要求。最后,對(duì)結(jié)構(gòu)設(shè)計(jì)中主要部件例如絲杠進(jìn)行校核以及精度驗(yàn)算。
驅(qū)動(dòng)電路設(shè)計(jì)部分,首先確定使用直流伺服電機(jī),并根據(jù)電機(jī)的型號(hào)參數(shù)設(shè)計(jì)驅(qū)動(dòng)電路。驅(qū)動(dòng)電路采用MOS管組成的H橋進(jìn)行功率驅(qū)動(dòng),采用PWM調(diào)速系統(tǒng)進(jìn)行速度控制。
設(shè)計(jì)完成后,根據(jù)主要結(jié)構(gòu)及尺寸關(guān)系,繪制二維的零件圖,繪制驅(qū)動(dòng)電路原理圖。
關(guān)鍵詞: 數(shù)控銑床;工作臺(tái);直流伺服電機(jī);PWM
Abstract
CNC milling machining equipment, occupies an important position in the manufacturing sector plays an important role in the development of the national economy. The two-dimensional precision stage is a key component of CNC milling machine and the quality of two-dimensional precision stage has an important influence on CNC milling machining accuracy and product quality, CNC milling two-dimensional precision stage design has an important economic value social significance.
The design of the main task is to study the CNC milling two-dimensional precision stage the main structure, including the structure of the table design and the design of the motor drive circuit.
The table structure design principles with reference to the existing structure of the CNC milling machine table, the practical requirements of the bench-strength, stiffness, size, etc. At the same time try to simplify the structure and optimization. The design procedure is to first determine the overall size, the overall size of the Shenyang Machine Tool Factory excellence in CNC milling machine. Use Solidworks software for computer-aided design, using the model to simulate the assembly and interference checking. Secondly, the specific structural design as much as possible suppliers of standard parts, reduce machining requirements. Finally, the structural design of the main components such as screw checking and accuracy checking.
The design portion of the drive circuit, first of all determined using a DC servo motor and drive circuit according to the motor model parameters. Drive circuit composed of MOS transistor H-bridge power driver and PWM speed control system for speed control.
When design is complete, according to the main structure and size relationships, draw two-dimensional parts diagram, draw driver circuit schematic.
Keywords: CNC milling machine; table; DC servo motor; the PWM
第37頁(yè) 共37頁(yè)
摘 要
數(shù)控銑床是重要的機(jī)械加工裝備,在制造業(yè)中占有重要的地位,對(duì)國(guó)民經(jīng)濟(jì)的發(fā)展起著重要作用。其中,二維精密工作臺(tái)是數(shù)控銑床的關(guān)鍵部件,二維精密工作臺(tái)對(duì)數(shù)控銑床的加工精度和產(chǎn)品質(zhì)量有著重要的影響,進(jìn)行數(shù)控銑床二維精密工作臺(tái)設(shè)計(jì)具有重要的經(jīng)濟(jì)價(jià)值與社會(huì)意義。
本設(shè)計(jì)的主要任務(wù)是研究數(shù)控銑床二維精密工作臺(tái)主要結(jié)構(gòu),主要包括工作臺(tái)的結(jié)構(gòu)設(shè)計(jì)以及電機(jī)驅(qū)動(dòng)電路的設(shè)計(jì)。
工作臺(tái)結(jié)構(gòu)設(shè)計(jì)的原則是參考現(xiàn)有的數(shù)控銑床工作臺(tái)的結(jié)構(gòu),在實(shí)現(xiàn)工作臺(tái)的強(qiáng)度、剛度、尺寸等實(shí)用要求的同時(shí)盡量實(shí)現(xiàn)結(jié)構(gòu)簡(jiǎn)化及優(yōu)化。設(shè)計(jì)的步驟是首先確定總體尺寸,主要參考沈陽(yáng)機(jī)床廠卓越型數(shù)控銑床的總體尺寸。并采用solidworks軟件進(jìn)行計(jì)算機(jī)輔助設(shè)計(jì),利用模型進(jìn)行模擬裝配和干涉檢查。其次,在具體結(jié)構(gòu)設(shè)計(jì)上盡量選著供應(yīng)商的標(biāo)準(zhǔn)件,減少對(duì)機(jī)加工的要求。最后,對(duì)結(jié)構(gòu)設(shè)計(jì)中主要部件例如絲杠進(jìn)行校核以及精度驗(yàn)算。
驅(qū)動(dòng)電路設(shè)計(jì)部分,首先確定使用直流伺服電機(jī),并根據(jù)電機(jī)的型號(hào)參數(shù)設(shè)計(jì)驅(qū)動(dòng)電路。驅(qū)動(dòng)電路采用MOS管組成的H橋進(jìn)行功率驅(qū)動(dòng),采用PWM調(diào)速系統(tǒng)進(jìn)行速度控制。
設(shè)計(jì)完成后,根據(jù)主要結(jié)構(gòu)及尺寸關(guān)系,繪制二維的零件圖,繪制驅(qū)動(dòng)電路原理圖。
關(guān)鍵詞: 數(shù)控銑床;工作臺(tái);直流伺服電機(jī);PWM
Abstract
CNC milling machining equipment, occupies an important position in the manufacturing sector plays an important role in the development of the national economy. The two-dimensional precision stage is a key component of CNC milling machine and the quality of two-dimensional precision stage has an important influence on CNC milling machining accuracy and product quality, CNC milling two-dimensional precision stage design has an important economic value social significance.
The design of the main task is to study the CNC milling two-dimensional precision stage the main structure, including the structure of the table design and the design of the motor drive circuit.
The table structure design principles with reference to the existing structure of the CNC milling machine table, the practical requirements of the bench-strength, stiffness, size, etc. At the same time try to simplify the structure and optimization. The design procedure is to first determine the overall size, the overall size of the Shenyang Machine Tool Factory excellence in CNC milling machine. Use Solidworks software for computer-aided design, using the model to simulate the assembly and interference checking. Secondly, the specific structural design as much as possible suppliers of standard parts, reduce machining requirements. Finally, the structural design of the main components such as screw checking and accuracy checking.
The design portion of the drive circuit, first of all determined using a DC servo motor and drive circuit according to the motor model parameters. Drive circuit composed of MOS transistor H-bridge power driver and PWM speed control system for speed control.
When design is complete, according to the main structure and size relationships, draw two-dimensional parts diagram, draw driver circuit schematic.
Keywords: CNC milling machine; table; DC servo motor; the PWM
目 錄
引言 3
1 國(guó)內(nèi)外數(shù)控銑床發(fā)展情況與設(shè)計(jì)意義 4
1.1 國(guó)外數(shù)控銑床發(fā)展情況 4
1.2 國(guó)內(nèi)數(shù)控銑床發(fā)展情況 4
1.3 設(shè)計(jì)意義 4
2 方案選擇 5
2.1 伺服進(jìn)給系統(tǒng)選擇 5
2.2 伺服電機(jī)選擇 6
3 伺服進(jìn)給系統(tǒng)參數(shù)計(jì)算 7
3.1 傳動(dòng)系統(tǒng)設(shè)計(jì) 7
3.2 工作臺(tái)外形尺寸及重量初步估算 7
3.3 滾珠絲杠選擇及計(jì)算 8
3.3.1滾珠絲杠精度 8
3.3.2滾珠絲杠選擇 8
3.4 絲杠支撐選擇及計(jì)算 11
3.5 導(dǎo)軌副的選擇及計(jì)算 13
3.6 選擇伺服電動(dòng)機(jī) 14
3.6.1最大切削負(fù)載轉(zhuǎn)矩計(jì)算 14
3.6.2負(fù)載慣量計(jì)算 15
3.6.3空載加速轉(zhuǎn)矩計(jì)算 16
3.7 伺服系統(tǒng)增益 16
3.8 精度驗(yàn)算 16
3.8.1伺服剛度KR 16
3.8.2滾珠絲杠的拉壓剛度Ktmin 17
3.8.3絲杠軸承的軸向剛度Kba 17
3.8.4滾珠絲杠螺母的接觸剛度KC 18
3.8.5聯(lián)軸器扭轉(zhuǎn)剛度K1 18
3.8.6綜合剛度K 18
3.8.7彈性變形 18
3.8.8定位誤差驗(yàn)算 18
4 主要部件設(shè)計(jì)及校核 18
4.1 聯(lián)軸器 18
4.2 鍵 19
4.3 支承件 19
4.3.1床身結(jié)構(gòu) 20
4.3.2電機(jī)座 20
4.4 T型槽工作臺(tái) 21
4.5 檢測(cè)裝置 21
5 直流伺服電機(jī)驅(qū)動(dòng)電路設(shè)計(jì) 23
5.1 總體方案概述 23
5.2 H橋驅(qū)動(dòng)原理 23
5.3 PWM原理 24
5.4 H橋驅(qū)動(dòng)電路設(shè)計(jì) 25
5.5 自舉驅(qū)動(dòng)電路 26
5.6 脈寬信號(hào)產(chǎn)生電路 29
6 結(jié)論 31
謝 辭 32
參考文獻(xiàn) 33
附 錄 34
引言
自20世紀(jì)中葉數(shù)控技術(shù)出現(xiàn)以來(lái),數(shù)控銑床給機(jī)械制造業(yè)帶來(lái)了革命性的變化。數(shù)控銑床加工具有如下特點(diǎn):加工柔性好,加工精度高,生產(chǎn)率高,減輕操作者勞動(dòng)強(qiáng)度、改善勞動(dòng)條件,有利于生產(chǎn)管理的現(xiàn)代化以及經(jīng)濟(jì)效益的提高。數(shù)控銑床具有如下功能:點(diǎn)位控制功能、連續(xù)輪廓控制功能、刀具半徑自動(dòng)補(bǔ)償功能、刀具長(zhǎng)度補(bǔ)償功能、鏡像加工功能、固定循環(huán)功能、特殊功能。數(shù)控銑床是一種高度機(jī)電一體化的產(chǎn)品,適用于加工多品種小批量零件、結(jié)構(gòu)較復(fù)雜、精度要求較高的零件、需要頻繁改型的零件、價(jià)格昂貴不允許報(bào)廢的關(guān)鍵零件、要求精密復(fù)制的零件、需要縮短生產(chǎn)周期的急需零件以及要求100%檢驗(yàn)的零件。數(shù)控銑床的特點(diǎn)及其應(yīng)用范圍使其成為國(guó)民經(jīng)濟(jì)和國(guó)防建設(shè)發(fā)展的重要裝備。
二維工作臺(tái)是數(shù)控銑床的重要部件,二維工作臺(tái)的精度對(duì)零部件的加工精度有重要影響。數(shù)控銑床二維精密工作臺(tái)設(shè)計(jì)是數(shù)控銑床設(shè)計(jì)中重要的一個(gè)環(huán)節(jié)。
1 國(guó)內(nèi)外數(shù)控銑床發(fā)展情況與設(shè)計(jì)意義
1.1 國(guó)外數(shù)控銑床發(fā)展情況
美國(guó)麻省理工學(xué)院于1952年成功研制了世界上第一臺(tái)數(shù)控銑床。1955年用于制造航空零件的數(shù)控銑床正式問(wèn)世!特別是隨微電子、計(jì)算機(jī)技術(shù)的進(jìn)步,數(shù)控機(jī)床在20世紀(jì)80年代以后加速發(fā)展,終端用戶提出更多需求,美德日各國(guó)機(jī)床制造商競(jìng)相展示先進(jìn)技術(shù)、爭(zhēng)奪用戶。國(guó)外的數(shù)控發(fā)展迅速,并具有一下特點(diǎn):高速高精與多軸加工成為數(shù)控機(jī)床的主流,納米控制已經(jīng)成為高速高精加工的潮流;多任務(wù)和多軸加工數(shù)控機(jī)床越來(lái)越多地應(yīng)用到能源、航空航天等行業(yè);機(jī)床與機(jī)器人的集成應(yīng)用日趨普及,且結(jié)構(gòu)形式多樣化,應(yīng)用范圍擴(kuò)大化,運(yùn)動(dòng)速度高速化,多傳感器融合技術(shù)實(shí)用化,控制功能智能化,多機(jī)器人協(xié)同普及化;智能化加工與監(jiān)測(cè)功能不斷擴(kuò)充,車間的加工監(jiān)測(cè)與管理可實(shí)時(shí)獲取機(jī)床本身的狀態(tài)信息,分析相關(guān)數(shù)據(jù),預(yù)測(cè)機(jī)床的狀態(tài),提前進(jìn)行相關(guān)的維護(hù),避免事故的發(fā)生,減少機(jī)床的故障率,提高機(jī)床的利用率;最新的機(jī)床誤差檢測(cè)與補(bǔ)償技術(shù)能夠在較短的時(shí)間內(nèi)完成對(duì)機(jī)床的補(bǔ)償測(cè)量,與傳統(tǒng)的激光干涉儀相比,對(duì)機(jī)床誤差的補(bǔ)償精度能夠提高3~4倍,同時(shí)效率得到大幅度提升;最新的CAD/CAM技術(shù)為多軸多任務(wù)數(shù)控機(jī)床的加工提供了強(qiáng)有力的支持,可以大幅度提高加工效率;刀具技術(shù)發(fā)展迅速,眾多刀具的設(shè)計(jì)涵蓋了整個(gè)加工過(guò)程,并且新型刀具能夠滿足平穩(wěn)加工以及抗振性能的要求。
可以說(shuō)國(guó)外的數(shù)控銑床發(fā)展迅猛,代表著數(shù)控銑床發(fā)展的方向。
1.2 國(guó)內(nèi)數(shù)控銑床發(fā)展情況
中國(guó)于1958年研制出第一臺(tái)數(shù)控機(jī)床,在發(fā)展的道路上遇到了一些曲折,不過(guò)最近20年來(lái)數(shù)控機(jī)床的設(shè)計(jì)和制造技術(shù)有較大提高,主要表現(xiàn)在三大方面:培訓(xùn)一批設(shè)計(jì)、制造、使用和維護(hù)的人才;通過(guò)合作生產(chǎn)先進(jìn)數(shù)控機(jī)床,使設(shè)計(jì)、制造、使用水平大大提高,縮小了與世界先進(jìn)技術(shù)的差距;通過(guò)利用國(guó)外先進(jìn)元部件、數(shù)控系統(tǒng)配套,開(kāi)始能自行設(shè)計(jì)及制造高速、高性能、五面或五軸聯(lián)動(dòng)加工的數(shù)控機(jī)床,供應(yīng)國(guó)內(nèi)市場(chǎng)的需求,但對(duì)關(guān)鍵技術(shù)的試驗(yàn)、消化、掌握及創(chuàng)新卻較差。至今許多重要功能部件、自動(dòng)化刀具、數(shù)控系統(tǒng)依靠國(guó)外技術(shù)支撐,不能獨(dú)立發(fā)展,基本上處于從仿制走向自行開(kāi)發(fā)階段,與日本數(shù)控機(jī)床的水平差距很大。
1.3 設(shè)計(jì)意義
雖然國(guó)內(nèi)數(shù)控銑床與國(guó)外的相比還有很大的差距,但是數(shù)控銑床是重要的機(jī)械加工裝備,在制造業(yè)中占有重要的地位,對(duì)國(guó)民經(jīng)濟(jì)的發(fā)展起著重要作用。其中,二維精密工作臺(tái)是數(shù)控銑床的關(guān)鍵部件,二維精密工作臺(tái)的質(zhì)量對(duì)數(shù)控銑床的加工精度和產(chǎn)品質(zhì)量有著重要的影響,進(jìn)行數(shù)控銑床二維精密工作臺(tái)設(shè)計(jì)具有重要的經(jīng)濟(jì)價(jià)值與社會(huì)意義。本設(shè)計(jì)基于三維計(jì)算機(jī)輔助設(shè)計(jì),加快新產(chǎn)品研制進(jìn)度,縮短設(shè)計(jì)周期,希望對(duì)數(shù)控銑床制造業(yè)起到一點(diǎn)意義。
2 方案選擇
2.1 伺服進(jìn)給系統(tǒng)選擇
伺服進(jìn)給系統(tǒng)一般按照有無(wú)位置檢測(cè)與反饋可以分為閉環(huán)伺服系統(tǒng)、半閉環(huán)伺服系統(tǒng)、開(kāi)環(huán)伺服系統(tǒng)。
閉環(huán)伺服系統(tǒng)中有反饋控制系統(tǒng),位置采樣點(diǎn)從工作臺(tái)引出,可直接對(duì)最終運(yùn)動(dòng)部件的實(shí)際位置進(jìn)行檢測(cè);能得到更好的精度、更高的速度和驅(qū)動(dòng)功率。安裝在執(zhí)行部件上的位置檢測(cè)裝置,測(cè)量執(zhí)行部件的實(shí)際位移量并轉(zhuǎn)換成電脈沖,反饋到輸入端并與輸人位置指令信號(hào)進(jìn)行比較,求得誤差,依此構(gòu)成閉環(huán)位置控制。閉環(huán)伺服系統(tǒng)成本高,對(duì)環(huán)境室溫要求嚴(yán)格,設(shè)計(jì)和調(diào)試都比開(kāi)環(huán)伺服系統(tǒng)難。但是可以獲得更高的精度,更快的速度,驅(qū)動(dòng)功率更大的特性指標(biāo)。閉環(huán)伺服系統(tǒng)的定位精度一般可達(dá)±0.01mm~±0.005 mm。如圖2-1所示。
圖2-1 閉環(huán)伺服系統(tǒng)
半閉環(huán)伺服系統(tǒng)將檢測(cè)元件安裝在中間傳動(dòng)件上,間接測(cè)量執(zhí)行部件位置的系統(tǒng)。閉壞伺服系統(tǒng)可以消除機(jī)械傳動(dòng)機(jī)構(gòu)的全部誤差,而半閉環(huán)伺服系統(tǒng)只能補(bǔ)償系統(tǒng)環(huán)路內(nèi)部分元件的誤差但是它的結(jié)構(gòu)與凋試都比較簡(jiǎn)單,如果將角位移檢測(cè)元件與速度檢測(cè)元件和伺服電機(jī)做成一個(gè)整體時(shí)則無(wú)需考慮位置檢測(cè)裝置的安裝問(wèn)題??偟膩?lái)說(shuō),半閉環(huán)伺服系統(tǒng)的精度比閉環(huán)伺服系統(tǒng)的精度要低一些,在一些對(duì)精度中等的場(chǎng)合常使用半閉環(huán)伺服系統(tǒng)。半閉環(huán)伺服系統(tǒng)的結(jié)構(gòu)示意如圖2-2所示。
圖2-2 半閉環(huán)伺服系統(tǒng)
開(kāi)環(huán)伺服系統(tǒng)是最簡(jiǎn)單的進(jìn)給伺服系統(tǒng),無(wú)位置反饋環(huán)節(jié)。這種系統(tǒng)的伺服驅(qū)動(dòng)裝置主要是步進(jìn)電動(dòng)機(jī)、功率步進(jìn)電動(dòng)機(jī)、電液脈沖電動(dòng)機(jī)等。由數(shù)控系統(tǒng)發(fā)出的指令脈沖,經(jīng)驅(qū)動(dòng)電路控制和功率放大后,使步進(jìn)電動(dòng)機(jī)轉(zhuǎn)動(dòng),通過(guò)齒輪副與滾珠絲杠螺母副驅(qū)動(dòng)執(zhí)行部件。只要控制指令系統(tǒng)脈沖的數(shù)量、頻率及通電順序,便可以控制執(zhí)行部件運(yùn)動(dòng)的位移量、速度和運(yùn)動(dòng)方向。開(kāi)環(huán)伺服系統(tǒng)的精度主要取決于步進(jìn)電動(dòng)機(jī)的角位移精度,齒輪、絲桿等傳動(dòng)元件的節(jié)距的精度,所以開(kāi)環(huán)伺服系統(tǒng)的精度低,開(kāi)環(huán)伺服系統(tǒng)的特點(diǎn)是結(jié)構(gòu)簡(jiǎn)單、工作穩(wěn)定、調(diào)試方便、維修簡(jiǎn)單、價(jià)格低廉;因此在精度和速度要求不高、驅(qū)動(dòng)力矩不大的場(chǎng)合得到廣泛應(yīng)用。其結(jié)構(gòu)如圖2.3所示。
圖2-3 半閉環(huán)伺服系統(tǒng)
通過(guò)以上對(duì)比,本設(shè)計(jì)選著閉環(huán)伺服系統(tǒng)作為二維精密工作臺(tái)進(jìn)給系統(tǒng)的主要形式。
2.2 伺服電機(jī)選擇
目前常用的驅(qū)動(dòng)元件主要有步進(jìn)電動(dòng)機(jī),直流伺服電動(dòng)機(jī),交流伺服電動(dòng)機(jī)。
步進(jìn)電機(jī)的工作原理是通過(guò)被勵(lì)磁的定子電磁力吸引轉(zhuǎn)子偏轉(zhuǎn)從而輸出轉(zhuǎn)矩,具有快速的啟動(dòng),制動(dòng)和反轉(zhuǎn)的能力;在一定頻率范圍內(nèi)各種運(yùn)動(dòng)方式都能任意的改變且不會(huì)失步,具有自整步的能力;沒(méi)有一周累計(jì)誤差,所以定位精度很高;價(jià)格便宜。但是步進(jìn)電機(jī)有效率低,驅(qū)動(dòng)慣量負(fù)載能力差等缺點(diǎn)缺點(diǎn),作高速運(yùn)動(dòng)時(shí)容易失步,所以現(xiàn)在步進(jìn)電機(jī)主要用在開(kāi)環(huán)伺服系統(tǒng)中。
直流伺服電機(jī)具有良好的啟動(dòng)、制動(dòng)和調(diào)速特性,可以方便地在寬范圍內(nèi)實(shí)現(xiàn)平滑無(wú)級(jí)調(diào)速,因此在對(duì)伺服電機(jī)的調(diào)速性能和啟動(dòng)性能要求較高的設(shè)備中,大都采用直流伺服電機(jī)驅(qū)動(dòng)。直流伺服電機(jī)分為有刷和無(wú)刷電機(jī)兩種,有刷電機(jī)成本低,結(jié)構(gòu)簡(jiǎn)單,啟動(dòng)轉(zhuǎn)矩大,調(diào)速范圍寬,控制容易,需要維護(hù),但維護(hù)方便(換碳刷),會(huì)產(chǎn)生一定電磁干擾,對(duì)環(huán)境有要求。直流無(wú)刷伺服電機(jī)體積小,重量輕,響應(yīng)快,速度高,慣量小,轉(zhuǎn)動(dòng)平滑,力矩穩(wěn)定。容易實(shí)現(xiàn)智能化,其電子換相方式靈活,可以方波換相或正弦波換相。電機(jī)免維護(hù)不存在碳刷損耗的情況,效率很高,運(yùn)行溫度低噪音小,電磁輻射很小,長(zhǎng)壽命,可用于各種環(huán)境,但是缺點(diǎn)力矩較小。
交流伺服電動(dòng)機(jī),轉(zhuǎn)子慣量較直流伺服電動(dòng)機(jī)小,在動(dòng)態(tài)響應(yīng)上更好。一般來(lái)說(shuō),在同樣的體積下,交流伺服電動(dòng)機(jī)的輸出功率可比直流伺服電動(dòng)機(jī)提高10%—70%,此外,交流伺服電動(dòng)機(jī)的容量也比直流伺服電動(dòng)機(jī)大,易達(dá)到更高的電壓和轉(zhuǎn)速。在交流伺服系統(tǒng)中可以用交流同步電機(jī)也可以用交流感應(yīng)電機(jī)。但是交流伺服電機(jī)的缺點(diǎn)是不能經(jīng)濟(jì)地實(shí)現(xiàn)范圍較大的平滑調(diào)速。
所以,經(jīng)過(guò)以上分析并考慮,本設(shè)計(jì)采用的是直流有刷伺服電機(jī),主要基于直流有刷電機(jī)力矩大且能夠?qū)崿F(xiàn)大范圍的平滑調(diào)速。
3 伺服進(jìn)給系統(tǒng)參數(shù)計(jì)算
3.1 傳動(dòng)系統(tǒng)設(shè)計(jì)
根據(jù)設(shè)計(jì)要求系統(tǒng)定位精度為0.01mm,選擇閉環(huán)伺服系統(tǒng)。
從產(chǎn)品目錄查詢得知直流伺服電動(dòng)機(jī)的一般轉(zhuǎn)速為1500rpm、2000rpm、3000rpm等。本設(shè)計(jì)取直流伺服電動(dòng)機(jī)通過(guò)聯(lián)軸器與絲杠直接連接,即i=1。取電動(dòng)機(jī)的最高轉(zhuǎn)速,則絲杠的最高轉(zhuǎn)速也為1500r/min。工作臺(tái)快速進(jìn)給的最高速度要求達(dá)到?;窘z杠導(dǎo)程
3.2 工作臺(tái)外形尺寸及重量初步估算
根據(jù)給定的有效行程,畫出工作臺(tái)簡(jiǎn)圖,如圖3-1所示,估算X向和Y向工作臺(tái)承載重量WX和WY。
圖3-1 工作臺(tái)簡(jiǎn)圖
取X向?qū)к壷蔚闹行木酁?00mm,Y向?qū)к壷蔚闹行木酁?00mm;
工作臺(tái)的尺寸:1200mm*600mm*50mm;
工作臺(tái)重量:按重量=體積材料比重估算:
;
X向拖板(滑座)尺寸為:1500mm*500mm*50mm
滑座重量:按重量=體積*材料比重估算為:
;
X向電機(jī)、絲杠等輔助裝置重量估算為4100N;
Y向運(yùn)動(dòng)部分總重量為:
3.3 滾珠絲杠選擇及計(jì)算
3.3.1滾珠絲杠精度
本設(shè)計(jì)要求達(dá)到0.01mm的定位精度,根據(jù)查閱滾珠絲杠產(chǎn)品庫(kù),對(duì)于1級(jí)(P1)精度絲杠,任意導(dǎo)程允差為0.006mm,2級(jí)(P2)精度絲杠的導(dǎo)程允差為0.008mm。初步設(shè)計(jì)時(shí)先設(shè)絲杠的任意300mm行程內(nèi)變動(dòng)量為定位精度的1/3 ~1/2,即0.003~0.005mm,因此,取滾珠絲杠精度為P1級(jí),即為1級(jí)精度絲杠。
3.3.2滾珠絲杠選擇
滾珠絲杠的名義直徑、滾珠的列數(shù)和工作圈數(shù)應(yīng)按當(dāng)量動(dòng)載荷選擇。
(1)Y軸絲杠選擇
絲杠的最大載荷為切削時(shí)的最大進(jìn)給力加摩擦力;最小載荷即摩擦力。已知最大進(jìn)給力,估算工件加夾具質(zhì)量為400kg,導(dǎo)軌的摩擦系數(shù)為0.04,故Y軸絲杠的最小載荷(即摩擦力)
絲杠最大載荷
平均載荷
絲杠最高轉(zhuǎn)速為1500r/min,工作臺(tái)最小進(jìn)給速度為1mm/min,故絲杠的最低轉(zhuǎn)速為0.25r/min,可取為0,則取平均轉(zhuǎn)速n=(1500+0)=750r/min。絲杠使用壽命取T=30000h, 故絲杠工作壽命(以106r為一個(gè)單位)
絲杠的當(dāng)量動(dòng)載荷
式中為精度影響系數(shù),對(duì)于1級(jí)精度滾珠絲杠取=1;
式中為載荷性質(zhì)系數(shù),一般情況下取1.2~1.5,本設(shè)計(jì)取=1.5;
查滾珠絲杠樣品庫(kù),選擇BIF3610。其名義直徑為36mm,導(dǎo)程10mm。額定動(dòng)載荷,,符合設(shè)計(jì)要求。軸向剛度。預(yù)緊力。只要軸向載荷值不達(dá)到或超過(guò)預(yù)緊力的3倍,就不必對(duì)預(yù)緊力提出額外的要求。本例中絲杠最大載荷為3.56KN,遠(yuǎn)小于3。
BIF型號(hào)絲桿錯(cuò)位預(yù)壓絲杠,主要通過(guò)改變螺母中間螺紋槽的螺距來(lái)施加預(yù)壓的方式。對(duì)絲杠實(shí)施一定的預(yù)緊力,可以消除軸向間隙,以提高滾珠絲杠副的軸向剛度和傳動(dòng)精度。錯(cuò)位預(yù)壓方式相對(duì)于雙螺母預(yù)緊的方式主要是占用空間小,且雙螺母預(yù)壓方式中配磨墊片精度調(diào)整比較困難。
BIF3610型絲桿的參數(shù)如表1所示。
表1 BIF3610參數(shù)
鋼球中心直徑dp
37.75mm
絲桿軸慣性力矩
1.29*10-2 kg.cm2/mm
溝槽谷徑dc
30.5mm
螺母質(zhì)量
4.84kg
負(fù)荷圈數(shù)
2列*2.5圈
絲杠軸質(zhì)量
6.51 kg/m
螺母全長(zhǎng)
171mm
潤(rùn)滑孔
M6
滾珠絲杠螺母副的有效行程
其中L——工作行程;
——安全行程:Le=5Ph;
——余程:Le=2Ph
——螺母長(zhǎng)度;
對(duì)于Y軸絲杠
。
實(shí)際中,Y軸絲杠取612mm。
(2)X軸絲杠選擇
計(jì)算完Y軸絲杠后,現(xiàn)在按照同一個(gè)步驟對(duì)X軸絲杠進(jìn)行計(jì)算。
已知最大進(jìn)給力,估算工件加夾具質(zhì)量為400kg,導(dǎo)軌的摩擦系數(shù)為0.04,故X軸絲杠的最小載荷(即摩擦力)
絲杠最大載荷
平均載荷
絲杠最高轉(zhuǎn)速為1500r/min,工作臺(tái)最小進(jìn)給速度為1mm/min,故絲杠的最低轉(zhuǎn)速為0.25r/min,可取為0,則取平均轉(zhuǎn)速n=(1500+0)=750r/min。絲杠使用壽命取T=15000h, 故絲杠工作壽命(以106r為一個(gè)單位)
絲杠的當(dāng)量動(dòng)載荷
式中為精度影響系數(shù),對(duì)于1級(jí)精度滾珠絲杠取=1;
式中為載荷性質(zhì)系數(shù),一般情況下取1.2~1.5,本設(shè)計(jì)取=1.5;
根據(jù)計(jì)算結(jié)果,本設(shè)計(jì)X軸絲杠同樣選擇BIF3610。額定動(dòng)載荷,,符合設(shè)計(jì)要求。軸向剛度。預(yù)緊力。只要軸向載荷值不達(dá)到或超過(guò)預(yù)緊力的3倍,就不必對(duì)預(yù)緊力提出額外的要求。本例中絲杠最大載荷為3.28KN,遠(yuǎn)小于3。
對(duì)于X軸絲杠
。
實(shí)際中,X軸絲杠取710mm。
綜上所述,本設(shè)計(jì)對(duì)于X軸與Y軸的絲杠的基本計(jì)算參數(shù)誤差不大,選擇都為同一型號(hào)絲杠,因此在伺服進(jìn)給系統(tǒng)系統(tǒng)計(jì)算中,關(guān)于絲杠支撐、直流伺服電機(jī)的計(jì)算中主要以Y軸絲杠的參數(shù)作為主要計(jì)算的參數(shù)。
3.4 絲杠支撐選擇及計(jì)算
為了提高傳動(dòng)剛度,選擇合理的支承結(jié)構(gòu)并正確安裝很重要,對(duì)于傳動(dòng)精度有很大的影響,絲杠主要承受軸向載荷,徑向載荷主要是臥式絲杠的自重。因此絲杠的軸向精度和剛度要求較高。絲杠的支承結(jié)構(gòu)有以下幾種:
(1)一端固定——一端自由
絲杠一端固定,另一端自由。固定端軸承同時(shí)承受軸向力和徑向力,這種支承方式用于行程小的短絲杠或者用于全閉環(huán)的機(jī)床,因?yàn)檫@種結(jié)構(gòu)的機(jī)械定位精度是最不可靠的,特別是對(duì)于長(zhǎng)徑比大的絲杠(滾珠絲杠相對(duì)細(xì)長(zhǎng)),熱變性是很明顯的,1.5m長(zhǎng)的絲杠在冷、熱的不同環(huán)境下變化0.05~0.10mm是很正常的。但是由于他的結(jié)構(gòu)簡(jiǎn)單,安裝調(diào)試方便,許多高精度機(jī)床仍然采用這種結(jié)構(gòu),但是必須加裝光柵,采用全閉環(huán)反饋。如圖3-2所示。
圖3-2 一端固定——一端自由
(2)一端固定——另一端支承
絲杠一端固定,另一端支承。固定端同時(shí)承受軸向力和徑向力;支承端只承受徑向力,而且能作微量的軸向浮動(dòng),可以減少或避免因絲杠自重而出現(xiàn)的彎曲,同時(shí)絲杠熱變形可以自由的向一端伸長(zhǎng)。這種結(jié)構(gòu)使用最廣泛,目前國(guó)內(nèi)中小型數(shù)控車床、立式加工中心等均采用這種結(jié)構(gòu)。如圖3-3所示。
圖3-3一端固定——另一端支承
(3)兩端固定
絲杠兩端均固定。固定端軸承都可以同時(shí)承受軸向力,這種支承方式,可以對(duì)絲杠施加適當(dāng)?shù)念A(yù)緊力,提高絲杠支承剛度,可以部分補(bǔ)償絲杠的熱變形。對(duì)于大型機(jī)床、重型機(jī)床以及高精度鏜銑床常采用此種方案。但是,這種絲杠的調(diào)整比較繁瑣,如果兩端的預(yù)緊力過(guò)大,將會(huì)導(dǎo)致絲杠最終的行程比設(shè)計(jì)行程要長(zhǎng),螺距也要比設(shè)計(jì)螺距大。如果兩端鎖母的預(yù)緊力不夠,會(huì)導(dǎo)致相反的結(jié)果,并容易引起機(jī)床震動(dòng),精度降低。所以,這類絲杠在拆裝時(shí)一定要按照原廠商說(shuō)明書調(diào)整,或借助儀器(雙頻激光測(cè)量?jī)x)調(diào)整。如圖3-4所示。
圖3-4 兩端固定
綜上所述,本設(shè)計(jì)選用兩端固定的支承方式。兩端均采用1對(duì)60°角接觸球軸承面對(duì)面組配,采用面對(duì)面組配的優(yōu)勢(shì)在于能承受雙向軸向載荷、通過(guò)預(yù)緊可以限制軸的軸向位移,并增加剛度和旋轉(zhuǎn)精度。在角接觸球軸承外配合圓螺母進(jìn)行鎖定。
角接觸球軸承使用7306,其外徑為72mm,內(nèi)徑為30mm。
計(jì)算軸承所承受的最大軸向載荷
計(jì)算軸承的預(yù)緊力
計(jì)算軸承的當(dāng)量軸向載荷FB
計(jì)算軸承的基本額定動(dòng)載荷C
其中:——軸承的工作轉(zhuǎn)速:n=750 r/min;
——軸承的基本額定壽命:T=30000h;
P——當(dāng)量動(dòng)載荷;
軸承的徑向載荷:
軸承的軸向載荷:
由
查表得,面對(duì)面安裝7306時(shí),徑向系數(shù)X=0.35,軸向載荷Y=0.57。
所以
面對(duì)面安裝7306時(shí),選用脂潤(rùn)滑,在脂潤(rùn)滑狀態(tài)下的極限轉(zhuǎn)速n'=9000r/min,軸承的轉(zhuǎn)速n=1500r/min;額定動(dòng)載荷Ca=67KN>51KN,故滿足要求。
3.5 導(dǎo)軌副的選擇及計(jì)算
采用的導(dǎo)軌,按照其接觸面的摩擦性質(zhì),可以分為滑動(dòng)導(dǎo)軌、滾動(dòng)導(dǎo)軌、靜壓導(dǎo)軌三大類。對(duì)導(dǎo)軌的基本要求就是:導(dǎo)向精度好、剛性好、運(yùn)動(dòng)輕便平穩(wěn)、耐磨性好、溫度變化影響小、以及結(jié)構(gòu)工藝性好等?;瑒?dòng)導(dǎo)軌結(jié)構(gòu)較簡(jiǎn)單,制造較容易,承載能力大,剛性好,抗震性能強(qiáng),對(duì)幾何形狀誤差不敏感等特點(diǎn),但是其缺點(diǎn)在與磨損較快,精度保持性差,摩擦助力大,運(yùn)動(dòng)靈活性較差,動(dòng)靜摩擦系數(shù)差值大,重載或者低速時(shí)較易產(chǎn)生“爬行現(xiàn)象”,高速運(yùn)動(dòng)時(shí)容易發(fā)熱。滾動(dòng)導(dǎo)軌的特點(diǎn)是摩擦系數(shù)小,動(dòng)靜摩擦系數(shù)差別小,低速運(yùn)動(dòng)時(shí)不易出現(xiàn)“爬行”現(xiàn)象;運(yùn)動(dòng)靈敏輕便,所需功率??;移動(dòng)與定位精度高;精度保持好;對(duì)溫度敏感變化低;潤(rùn)滑簡(jiǎn)單,維修方便,但是其缺點(diǎn)是導(dǎo)軌面與滾動(dòng)體之間為點(diǎn)接觸或者線接觸,抗振性能差,接觸應(yīng)力大;對(duì)導(dǎo)軌的表面硬度、表面形狀精度和滾動(dòng)體的尺寸精度要求高。空氣靜壓導(dǎo)軌適用于精密、輕載、高速的場(chǎng)合。因此,本設(shè)計(jì)采用全鋼球直線運(yùn)動(dòng)導(dǎo)軌。
導(dǎo)軌的靜安全系數(shù),式中:為導(dǎo)軌的基本靜額定載荷;工作載荷P=0.5(Fz+F工件); =1.0~3.0(一般運(yùn)行狀況),3.0~5.0(運(yùn)動(dòng)時(shí)受沖擊、振動(dòng))。根據(jù)計(jì)算結(jié)果查有關(guān)資料初選導(dǎo)軌:因機(jī)床工作臺(tái)運(yùn)動(dòng)平穩(wěn)取=3.0。
根據(jù)計(jì)算額定靜載荷初選導(dǎo)軌:HSR 55B,如圖3-5所示:
圖3-5 HSR55B
基本參數(shù)如下:
導(dǎo)軌的額定動(dòng)載荷=88.5KN
導(dǎo)軌的額定靜載荷Co=137KN
導(dǎo)軌的額定傾覆力矩 21.3KN
依據(jù)使用速度v(m/min)和初選導(dǎo)軌的基本動(dòng)額定載荷 (kN)驗(yàn)算導(dǎo)軌的工作壽命:
滿足使用壽命。
3.6 選擇伺服電動(dòng)機(jī)
直流伺服電機(jī)的選用,應(yīng)考慮三個(gè)要求:最大切削負(fù)載轉(zhuǎn)矩,不得超過(guò)電機(jī)的額定轉(zhuǎn)矩;電機(jī)的轉(zhuǎn)子慣量JM應(yīng)與負(fù)載慣量Jr相配對(duì);快速移動(dòng)時(shí),轉(zhuǎn)矩不得超過(guò)伺服電機(jī)的最大轉(zhuǎn)矩。
3.6.1最大切削負(fù)載轉(zhuǎn)矩計(jì)算
所選伺服電機(jī)的額定轉(zhuǎn)矩應(yīng)大于最大切削負(fù)載轉(zhuǎn)矩。最大切削負(fù)載轉(zhuǎn)矩T可計(jì)算,即
從前面的計(jì)算已知,最大進(jìn)給力,絲杠導(dǎo)程,預(yù)緊力,查《機(jī)械設(shè)計(jì)手冊(cè)》,滾珠絲杠螺母副的機(jī)械效率η=0.9。因滾珠絲杠預(yù)加載荷引起的附加摩擦力矩
查《角接觸推力球軸承組配技術(shù)條件》,得單個(gè)軸承的摩擦力矩為0.32N·m,故一對(duì)軸承的摩擦力矩。兩對(duì)軸承的摩擦力矩為。伺服電動(dòng)機(jī)與絲杠相連,其傳動(dòng)比i=1,則最大切削負(fù)載轉(zhuǎn)矩
所選伺服電動(dòng)機(jī)的額定轉(zhuǎn)矩應(yīng)大于此值。
3.6.2負(fù)載慣量計(jì)算
負(fù)載慣量可按以下次序計(jì)算。
(1)工件、夾具與工作臺(tái)折算到電機(jī)軸上的慣量J1
工件、夾具與工作臺(tái)的最大質(zhì)量為1400kg,折算到電動(dòng)機(jī)軸上的慣量可計(jì)算
式中 v——工作臺(tái)移動(dòng)速度,m/s
——伺服電機(jī)的角速度,rad/s
M——直線移動(dòng)件工件、夾具和工作臺(tái)的質(zhì)量,kg
(2)絲桿加在電機(jī)軸上的慣量J2
絲杠名義直徑,長(zhǎng)度l=0.9m,絲杠材料(鋼)的密度。絲杠加在在電動(dòng)機(jī)軸上的慣量
(3)聯(lián)軸節(jié)加上鎖緊螺母等的慣量可直接查手冊(cè)得到,即
(4)總負(fù)載總慣量
數(shù)控機(jī)床慣性匹配條件,,所選伺服電動(dòng)機(jī)的轉(zhuǎn)子慣量應(yīng)在0.0057~0.0228范圍之內(nèi)。
根據(jù)上述計(jì)算可初步選定直流伺服電動(dòng)機(jī)130SZD08。其額定轉(zhuǎn)矩為19.1,大于最大切削負(fù)載轉(zhuǎn)矩11.83;轉(zhuǎn)子慣量滿足匹配要求。
130SZS08型直流伺服電機(jī)的主要技術(shù)參數(shù)如下:
最高轉(zhuǎn)速nmax:1500r/min
額定轉(zhuǎn)矩Te:19.1N.m
最大轉(zhuǎn)矩Tmax:150N.m
轉(zhuǎn)子慣量JM:0.0209kg.m2
電樞直流電阻Rm:0.3
機(jī)械時(shí)間常數(shù)tM:26.5ms
額定電壓:180V
額定電流:20A
3.6.3空載加速轉(zhuǎn)矩計(jì)算
當(dāng)執(zhí)行件從靜止以階躍指令加速到最大移動(dòng)速度時(shí),所需的空載加速轉(zhuǎn)矩Ta。
(1) 空載加速時(shí),主要克服的是慣性。選用130SZD08型直流伺服電動(dòng)機(jī),總慣量
=
(2)加速時(shí)間通常去的3-4倍,故=(3-4)
=
則
空載加速轉(zhuǎn)矩不允許超過(guò)伺服電動(dòng)機(jī)的最大輸出轉(zhuǎn)矩。由此可見(jiàn),F(xiàn)B-15型直流伺服電動(dòng)機(jī)的= 150>=,滿足設(shè)計(jì)要求。
3.7 伺服系統(tǒng)增益
通常取系統(tǒng)增益=。對(duì)輪廓控制的加工中心機(jī)床可取較大值,初步取。伺服系統(tǒng)的時(shí)間常數(shù)為的倒數(shù),=1/=。根據(jù)如選用130SZD08直流伺服電動(dòng)機(jī),執(zhí)行件(工作臺(tái))達(dá)到最大加速度
=
伺服系統(tǒng)要求達(dá)到的最大加速度發(fā)生在系統(tǒng)處于時(shí)間常數(shù)內(nèi),執(zhí)行件的速度從增加到時(shí),
a略小于,因而按照加速度能力選擇= 20是不合適的。應(yīng)適當(dāng)減少值,增強(qiáng)系統(tǒng)的性能。取=15,則
經(jīng)過(guò)重新選擇,a大于,因而按照加速度能力選擇= 15是合適的。滿足系統(tǒng)的性能要求。
3.8 精度驗(yàn)算
本設(shè)計(jì)要求的定位精度為,其絲杠的導(dǎo)程誤差取0.006mm。其余誤差為伺服系統(tǒng)誤差、絲杠軸承的軸向跳動(dòng)和在載荷作用下各機(jī)械環(huán)節(jié)彈性變形引起的位移等。
3.8.1伺服剛度KR
伺服剛度可根據(jù)下式計(jì)算:
其中,KM是伺服電動(dòng)機(jī)的增益,它等于電動(dòng)機(jī)的角速度(rad/s)與輸入電壓(V)的比值。輸入電壓UM除少量消耗于電樞回路的阻抗外,大部分被反電動(dòng)勢(shì)所平衡。KS是伺服電動(dòng)機(jī)的反電動(dòng)勢(shì)系數(shù)(sv/rad),為伺服電動(dòng)機(jī)單位角速度(rad/s)所產(chǎn)生的反電動(dòng)勢(shì)(V).估算是,可近似地認(rèn)為輸入電壓UM等于反電動(dòng)勢(shì)。因而近似地認(rèn)為
130SZD08直流伺服電動(dòng)機(jī)的轉(zhuǎn)矩系數(shù)Kt=0.57Nm/A,因伺服系統(tǒng)增益Ks=15,速度控制環(huán)的增益Kv0=2-4Ks,取
;
電樞直流電阻RM=。故
折合到工作臺(tái)部件的直線剛度
3.8.2滾珠絲杠的拉壓剛度Ktmin
本例中的絲杠為兩端軸向定位結(jié)構(gòu)。其最小拉壓剛度發(fā)生在工作臺(tái)螺母中點(diǎn)位置,已知工作臺(tái)的兩方向中最大行程為300mm,則中間位置為150mm,代入式中,則絲杠拉壓剛度
式中,di是絲杠底徑為30.5mm。E為絲杠材料鋼的彈性模量,E=102GPa。
3.8.3絲杠軸承的軸向剛度Kba
7306型軸承的鋼球直徑db=7.144mm,鋼球數(shù)Z=12 ,接觸角a=60°,預(yù)加載荷F0=2900N ,軸向外載荷為導(dǎo)軌摩擦力Ff=560N,故軸向載荷Fa為預(yù)加載荷與軸向外載荷之和,即
絲杠軸承軸向剛度
3.8.4滾珠絲杠螺母的接觸剛度KC
查手冊(cè)得
3.8.5聯(lián)軸器扭轉(zhuǎn)剛度K1
查文獻(xiàn)得
折合到工作臺(tái)部件的直線剛度為
3.8.6綜合剛度K
計(jì)算出伺服剛度折算到工作臺(tái)部件的直線剛度、滾珠絲杠最小拉壓剛度、絲杠軸承軸向剛度、滾珠絲杠螺母接觸剛度折算到工作臺(tái)部件直線剛度和聯(lián)軸節(jié)扭矩剛度'后,按彈簧串聯(lián)原則合成求得綜合剛度K,即
故
3.8.7彈性變形
工作臺(tái)定位精度是在不切削空載條件下檢驗(yàn)的,故軸向載荷僅為導(dǎo)軌的摩擦力Ff。本例中的摩擦力Ff=560N,故Ff因引起的彈性變形
3.8.8定位誤差驗(yàn)算
本例中滾珠絲杠的導(dǎo)程誤差為6um,加上彈性變形量=5.38um,即。再加上某些次要因素,純機(jī)械結(jié)構(gòu)不能滿足定位精度 的設(shè)計(jì)要求。所以使用閉環(huán)伺服系統(tǒng)可以很好的提高精度。
4 主要部件設(shè)計(jì)及校核
4.1 聯(lián)軸器
聯(lián)軸器有剛性聯(lián)軸器與彈性聯(lián)軸器之分,剛性聯(lián)軸器對(duì)兩軸對(duì)中性的要求很高,當(dāng)兩軸有相對(duì)位移存在時(shí),就會(huì)在機(jī)件內(nèi)引起附加載荷,使工作情況惡化。所以本設(shè)計(jì)選取彈性聯(lián)軸器。最后我們選取JM2型膜片聯(lián)軸器,膜片由幾組膜片(不銹鋼薄板)用螺栓交錯(cuò)地與兩半聯(lián)軸器聯(lián)接,每組膜片由數(shù)片疊集而成,膜片分為連桿式和不同形狀的整片式。膜片聯(lián)軸器靠膜片的彈性變形來(lái)補(bǔ)償所聯(lián)兩軸的相對(duì)位移,是一種高性能的金屬?gòu)?qiáng)元件撓性聯(lián)軸器,不用潤(rùn)油,結(jié)構(gòu)較緊湊,強(qiáng)度高,使用壽命長(zhǎng),無(wú)旋轉(zhuǎn)間隙,不受溫度和油污影響,具有耐酸、耐堿防腐蝕的特點(diǎn),適用于高溫、高速、有腐蝕介質(zhì)工況環(huán)境的軸系傳動(dòng)。如圖4-1所示。
圖4-1 膜片聯(lián)軸器
JM2型的公稱轉(zhuǎn)矩T為63Nm,瞬時(shí)最大轉(zhuǎn)矩Tmax=180Nm,許用的轉(zhuǎn)速np=5000r/min?,F(xiàn)在對(duì)聯(lián)軸器進(jìn)行校核,根據(jù)數(shù)控銑床轉(zhuǎn)矩變化中等的情況,所以工作情況系數(shù)KA=1.7。則計(jì)算轉(zhuǎn)矩
計(jì)算轉(zhuǎn)矩小于使用轉(zhuǎn)矩,絲桿的速度小于許用速度,故使用JM2型彈性聯(lián)軸器是合理的。
4.2 鍵
絲桿軸與聯(lián)軸器一端連接,采用的是A型平鍵。由軸徑d=30mm,查手冊(cè),可知鍵的剖面尺寸為b=8mm,h=7mm。
根據(jù)聯(lián)軸器長(zhǎng)度。
取鍵的公稱長(zhǎng)度L=24mm,鍵的標(biāo)記 鍵
鍵的工作長(zhǎng)度為
鍵與輪轂高度為
k=0.5h=3.5mm
根據(jù)聯(lián)軸器為45鋼,載荷有輕微沖擊,查手冊(cè),取許用擠壓應(yīng)力
根據(jù)普通平鍵連接的強(qiáng)度條件公式
故所選的鍵符合設(shè)計(jì)要求。
4.3 支承件
支撐件是機(jī)床的基本構(gòu)件,主要功能是首先是支承作用,即支承其他零部件,在機(jī)床的切削時(shí),承受一定的重力、切削力、摩擦力、夾緊力;其次是基準(zhǔn)作用,即保證機(jī)床在使用中或長(zhǎng)期使用后仍能保持各部件之間的正確的相互關(guān)系與相對(duì)運(yùn)動(dòng)軌跡。支承件受力受熱變形后的變形和振動(dòng)將直接影響機(jī)床的加工精度和表面質(zhì)量,一般來(lái)說(shuō)支撐件應(yīng)該滿足剛度、抗振性、熱變形、內(nèi)應(yīng)力等要求。
4.3.1床身結(jié)構(gòu)
常見(jiàn)的床身結(jié)構(gòu)如圖4-2所示。
圖4-2 床身結(jié)構(gòu)
圖4-2(a)是前、后、頂單面封閉的臥式箱形床身。為了排除切削,在導(dǎo)軌間開(kāi)有傾斜窗口。此種截面容易鑄造,但是剛度較低。圖4-2(b)是開(kāi)口床身,這種床身內(nèi)空間可用于儲(chǔ)存潤(rùn)滑油和切削液、安裝驅(qū)動(dòng)機(jī)構(gòu),在切屑不易落入導(dǎo)軌的情況下,常采用這種形式。圖4-2(c)為兩面封閉的床身,剛度較低,但便于排除切屑和切削液的流通,用于對(duì)剛度要求不高的機(jī)床。圖4-2(d)為重型機(jī)床的床身,導(dǎo)軌可多達(dá)4~5個(gè)。因此本設(shè)計(jì)選取的床身截面結(jié)構(gòu)主要參考開(kāi)口床身結(jié)構(gòu)。床身與導(dǎo)軌面的結(jié)構(gòu)形式主要采用單臂聯(lián)接結(jié)構(gòu)形式。設(shè)計(jì)的底座如圖4-3所示。
圖4-3 底座截面圖
4.3.2電機(jī)座
電機(jī)座是支撐件的重要組成部分,電機(jī)座是安放電機(jī)、聯(lián)軸器、軸承的重要部件,對(duì)于電機(jī)座來(lái)說(shuō),支撐件的連接剛度是電機(jī)座的重要指標(biāo)。支承件的聯(lián)接剛度是指支撐件在聯(lián)接處抵抗變形的能力。聯(lián)接處剛度與聯(lián)接處的材料、幾何形狀與尺寸、接觸面的硬度與表面粗糙度、幾何精度和加工方法等有關(guān)。
支撐件常以凸緣聯(lián)接,聯(lián)接剛度決定于螺釘剛度、凸緣剛度和接觸剛度。
為了保證一定的接觸剛度,接合面處的表面粗糙度Ra應(yīng)達(dá)到8um,接合面上的壓力應(yīng)該不少于1.5~5MPa。合理分布螺釘位置和選擇合適的螺釘尺寸可提高接觸剛度。從抗彎剛度考慮,螺釘應(yīng)均勻分布于四周,在聯(lián)接螺釘?shù)妮S線平面上布置筋條也能提高接觸剛度。估計(jì)尺寸要求以及經(jīng)驗(yàn)壁厚,本設(shè)計(jì)設(shè)計(jì)的電機(jī)座如圖4-4所示。電機(jī)座采用4個(gè)M14的內(nèi)六角圓柱頭螺釘進(jìn)行聯(lián)接,螺釘?shù)燃?jí)為12.9級(jí),屈服極限為1080Mpa。采用對(duì)角的銷釘進(jìn)行定位。如圖4-4所示。
圖4-4 電機(jī)座
4.4 T型槽工作臺(tái)
T型槽工作臺(tái)是與工裝夾具連接的重要部件,T型槽工作臺(tái)制造安裝精度直接影響著工件的加工精度。T型槽工作太一般采用高強(qiáng)度鑄鐵HT200-300,工作面硬度為HB170-240,經(jīng)過(guò)兩次人工處理(人工退火600度-700度或自然時(shí)效2-3年)確保精度穩(wěn)定,耐磨性能好。
槽數(shù)一般宜設(shè)計(jì)成奇數(shù),這樣中間的槽就是基準(zhǔn)槽。如果槽數(shù)為偶數(shù),需要標(biāo)注清楚中間兩個(gè)槽那個(gè)為基準(zhǔn)槽。根據(jù)我們的臺(tái)面為1200*600mm的大小。我們選取了T型槽寬度為12mm,T型槽的間距為80mm,所以T型槽的槽數(shù)設(shè)計(jì)成7個(gè)。其中基準(zhǔn)槽兩側(cè)面的表面粗糙度為3.2um,固定槽兩個(gè)側(cè)面的表面粗糙度為6.3um。其余表面的表面粗糙度最大允許值為12.5um。如圖4-5所示。
圖4-5 T型槽工作臺(tái)
4.5 檢測(cè)裝置
閉環(huán)伺服系統(tǒng),內(nèi)環(huán)是速度環(huán),外環(huán)是位置環(huán)。位置環(huán)的輸入信號(hào)是計(jì)算機(jī)給出的指令信號(hào)和位置檢測(cè)裝置反饋的位置信號(hào),這個(gè)反饋是一個(gè)負(fù)反饋,即與指令信號(hào)的相位相反。為了完成對(duì)位置的檢測(cè)一般都需要有位置檢測(cè)裝置,位置檢測(cè)裝置通常有光電編碼器、旋轉(zhuǎn)變壓器、光柵尺、感應(yīng)同步器或磁柵尺等。它們或者直接對(duì)位移進(jìn)行檢測(cè),或者間接對(duì)位移進(jìn)行檢測(cè)。本設(shè)計(jì)采用閉環(huán)伺服系統(tǒng),因此需要對(duì)位置進(jìn)行直接測(cè)量,本設(shè)計(jì)選著直線測(cè)量的方式,這樣主要有感應(yīng)同步器、光柵、磁柵、激光干涉儀等。
直線感應(yīng)同步器是一種電磁式位移測(cè)量裝置,由定尺與滑尺組成,直線感應(yīng)同步器具有一下特點(diǎn):直線感應(yīng)同步器對(duì)機(jī)床位移的測(cè)量是直接測(cè)量,不經(jīng)過(guò)任何機(jī)械傳動(dòng)裝置,測(cè)量精度主要取決于尺子的精度。位移精度可以達(dá)到0.001mm;測(cè)量長(zhǎng)度不受限制,當(dāng)測(cè)量長(zhǎng)度大于250mm時(shí),可以采用多塊定尺接長(zhǎng);對(duì)環(huán)境的適應(yīng)較高。因?yàn)楦袘?yīng)同步器金屬基板和床身鑄鐵的熱脹系數(shù)相近,當(dāng)溫度變化時(shí),兩者變化規(guī)律相同,不影響測(cè)量精度; 維護(hù)簡(jiǎn)單,壽命長(zhǎng)。感應(yīng)同步器的定尺和滑尺互不接觸,因此無(wú)任何摩擦,磨損,使用壽命長(zhǎng),且無(wú)須擔(dān)心元件老化等問(wèn)題。直線感應(yīng)同步器原理如圖4-6所示。
圖4-6 直線感應(yīng)同步器
激光干涉儀,以激光波長(zhǎng)為已知長(zhǎng)度,利用邁克耳遜干涉系統(tǒng)測(cè)量位移的通用長(zhǎng)度測(cè)量。在高精度的數(shù)控銑床上,經(jīng)常使用雙頻激光干涉儀作為機(jī)床的測(cè)量裝置,雙頻激光干涉儀是利用光的干涉原理和多普勒效應(yīng)來(lái)進(jìn)行位置檢測(cè)的。主要由激光器、檢偏器、光學(xué)干涉部分、光電接受元件、計(jì)數(shù)器等電路組成。由于激光的波長(zhǎng)極短,特別是激光的單色性好,其波長(zhǎng)值準(zhǔn)確。同時(shí),由于采用多普勒效應(yīng),雙頻激光干涉儀的計(jì)數(shù)器是計(jì)算頻率差的變化,不受激光強(qiáng)度和磁場(chǎng)變化的影響,即使在光強(qiáng)衰減90%時(shí),雙頻激光干涉儀也能正常工作。因而使用雙頻激光干涉儀進(jìn)行機(jī)床位置檢測(cè)精度極高。
圖4-7 雙頻激光干涉儀
通過(guò)以上對(duì)比我們選著雙頻激光干涉儀作為位置檢測(cè)裝置,具有精度高的特點(diǎn)。
5 直流伺服電機(jī)驅(qū)動(dòng)電路設(shè)計(jì)
5.1 總體方案概述
長(zhǎng)期以來(lái),直流伺服電機(jī)以其良好的線性特性、優(yōu)異的控制性能等特點(diǎn)成為大多數(shù)變速運(yùn)動(dòng)控制和閉環(huán)位置伺服控制系統(tǒng)的最佳選擇。特別隨著計(jì)算機(jī)在控制領(lǐng)域,高開(kāi)關(guān)頻率、全控型第二代電力半導(dǎo)體器件(GTR、GTO、MOSFET、IGBT等)的發(fā)展,以及脈寬調(diào)制(PWM)直流調(diào)速技術(shù)的應(yīng)用,直流伺服電機(jī)得到廣泛應(yīng)用。直流伺服電機(jī)主要有兩種調(diào)速系統(tǒng),分別為可控硅調(diào)速系統(tǒng)與晶體管脈沖調(diào)寬(PWM)調(diào)速系統(tǒng)。PWM調(diào)速系統(tǒng)具有開(kāi)關(guān)率高、波紋系數(shù)低、頻帶較寬、可以在高峰值電流下工作等特點(diǎn),因此驅(qū)動(dòng)電路方案選擇PWM調(diào)速系統(tǒng)。但是,專用集成電路構(gòu)成的直流電機(jī)驅(qū)動(dòng)器的輸出功率有限,不適合大功率直流電機(jī)驅(qū)動(dòng)需求。因此采用N溝道增強(qiáng)型場(chǎng)效應(yīng)管構(gòu)建H橋,實(shí)現(xiàn)大功率直流電機(jī)驅(qū)動(dòng)控制。
5.2 H橋驅(qū)動(dòng)原理
直流電機(jī)驅(qū)動(dòng)使用最廣泛的就是H型全橋式電路,這種驅(qū)動(dòng)電路方便地實(shí)現(xiàn)直流電機(jī)的四象限運(yùn)行,分別對(duì)應(yīng)正轉(zhuǎn)、正轉(zhuǎn)制動(dòng)、反轉(zhuǎn)、反轉(zhuǎn)制動(dòng)。H橋功率驅(qū)動(dòng)原理圖如圖5-1所示?! ?
H型全橋式驅(qū)動(dòng)電路的4只開(kāi)關(guān)管都工作在斬波狀態(tài)。A、D為一組,B、C為一組,這兩組狀態(tài)互補(bǔ),當(dāng)一組導(dǎo)通時(shí),另一組必須關(guān)斷。當(dāng)A、D導(dǎo)通時(shí),B、C關(guān)斷,電機(jī)兩端加正向電壓實(shí)現(xiàn)電機(jī)的正轉(zhuǎn)或反轉(zhuǎn)制動(dòng);當(dāng)B、C導(dǎo)通時(shí),A、D關(guān)斷,電機(jī)兩端為反向電壓,電機(jī)反轉(zhuǎn)或正轉(zhuǎn)制動(dòng)。實(shí)際控制中,需要不斷地使電機(jī)在四個(gè)象限之間切換,即在正轉(zhuǎn)和反轉(zhuǎn)之間切換,也就是在A、D導(dǎo)通且B、C關(guān)斷到A、D關(guān)斷且B、C導(dǎo)通這兩種狀態(tài)間轉(zhuǎn)換。這種情況理論上要求兩組控制信號(hào)完全互補(bǔ),但是由于實(shí)際的開(kāi)關(guān)器件都存在導(dǎo)通和關(guān)斷時(shí)間,絕對(duì)的互補(bǔ)控制邏輯會(huì)導(dǎo)致上下橋臂直通短路。為了避免直通短路且保證各個(gè)開(kāi)關(guān)管動(dòng)作的協(xié)同性和同步性,兩組控制信號(hào)理論上要求互為倒相,而實(shí)際必須相差一個(gè)足夠長(zhǎng)的死區(qū)時(shí)間,這個(gè)校正過(guò)程既可通過(guò)硬件實(shí)現(xiàn),即在上下橋臂的兩組控制信號(hào)之間增加延時(shí),也可通過(guò)軟件實(shí)現(xiàn)?! ?
圖5-1 H橋驅(qū)動(dòng)原理
5.3 PWM原理
直流電動(dòng)機(jī)轉(zhuǎn)速n=(U-IR)/Kφ
其中U為電樞端電壓,I為電樞電流,R為電樞電路總電阻,φ為每極磁通量,K為電動(dòng)機(jī)結(jié)構(gòu)參數(shù)。
直流電機(jī)轉(zhuǎn)速控制可分為勵(lì)磁控制法與電樞電壓控制法。勵(lì)磁控制法是控制磁通,其控制功率小,低速時(shí)受到磁飽和限制,高速時(shí)受到換向火花和換向器結(jié)構(gòu)強(qiáng)度的限制,而且由于勵(lì)磁線圈電感較大動(dòng)態(tài)響應(yīng)較差,所以這種控制方法用得很少。大多數(shù)應(yīng)用場(chǎng)合都使用電樞電壓控制法。隨著電力電子技術(shù)的進(jìn)步,改變電樞電壓可通過(guò)多種途徑實(shí)現(xiàn),其中PWM(脈寬調(diào)制)便是常用的改變電樞電壓的一種調(diào)速方法?! ?
PWM調(diào)速控制的基本原理是按一個(gè)固定頻率來(lái)接通和斷開(kāi)電源,并根據(jù)需要改變一個(gè)周期內(nèi)接通和斷開(kāi)的時(shí)間比(占空比)來(lái)改變直流電機(jī)電樞上電壓的"占空比",從而改變平均電壓,控制電機(jī)的轉(zhuǎn)速。在脈寬調(diào)速系統(tǒng)中,當(dāng)電機(jī)通電時(shí)其速度增加,電機(jī)斷電時(shí)其速度減低。只要按照一定的規(guī)律改變通、斷電的時(shí)間,即可控制電機(jī)轉(zhuǎn)速。而且采用PWM技術(shù)構(gòu)成的無(wú)級(jí)調(diào)速系統(tǒng).啟停時(shí)對(duì)直流系統(tǒng)無(wú)沖擊,并且具有啟動(dòng)功耗小、運(yùn)行穩(wěn)定的特點(diǎn)?! ?
設(shè)電機(jī)始終接通電源時(shí),電機(jī)轉(zhuǎn)速最大為Vmax,且設(shè)占空比為D=t1/T,則電機(jī)的平均速度Vd為:Vd=VmaxD由公式可知,當(dāng)改變占空比D=t1/T時(shí),就可以得到不同的電機(jī)平均速度Vd,從而達(dá)到調(diào)速的目的。嚴(yán)格地講,平均速度與占空比D并不是嚴(yán)格的線性關(guān)系,在一般的應(yīng)用中,可將其近似地看成線性關(guān)系。在直流電機(jī)驅(qū)動(dòng)控制電路中,PWM信號(hào)由外部控制電路提供,并經(jīng)高速光電隔離電路、電機(jī)驅(qū)動(dòng)邏輯與放大電路后,驅(qū)動(dòng)H橋下臂MOSFET的開(kāi)關(guān)來(lái)改變直流電機(jī)電樞上平均電壓,從而控制電機(jī)的轉(zhuǎn)速,實(shí)現(xiàn)直流電機(jī)PWM調(diào)速。PWM原理示意如圖5-2所示。
圖5-2 PWM原理
5.4 H橋驅(qū)動(dòng)電路設(shè)計(jì)
在直流電機(jī)控制中常用H橋電路作為驅(qū)動(dòng)器的功率驅(qū)動(dòng)電路。由于功率MOSFET是壓控元件,具有輸入阻抗大、開(kāi)關(guān)速度快、無(wú)二次擊穿現(xiàn)象等特點(diǎn),滿足高速開(kāi)關(guān)動(dòng)作需求,因此常用功率MOSFET構(gòu)成H橋電路的橋臂。H橋電路中的4個(gè)功率MOSFET分別采用N溝道型和P溝道型,而P溝道功率MOSFET一般不用于下橋臂驅(qū)動(dòng)電機(jī),這樣就有兩種可行方案:一種是上下橋臂分別用2個(gè)P溝道功率MOSFET和2個(gè)N溝道功率MOSFET;另一種是上下橋臂均用N溝道功率MOSFET?! ?
相對(duì)來(lái)說(shuō),利用2個(gè)N溝道功率MOSFET和2個(gè)P溝道功率MOSFET驅(qū)動(dòng)電機(jī)的方案,控制電路簡(jiǎn)單、成本低。但由于加工工藝的原因,P溝道功率MOSFET的性能要比N溝道功率MOSFET的差,且驅(qū)動(dòng)電流小,多用于功率較小的驅(qū)動(dòng)電路中。而N溝道功率MOSFET,一方面載流子的遷移率較高、頻率響應(yīng)較好、跨導(dǎo)較大;另一方面能增大導(dǎo)通電流、減小導(dǎo)通電阻、降低成本,減小面積。綜合考慮系統(tǒng)功率、可靠性要求,以及N溝道功率MOSFET的優(yōu)點(diǎn),本設(shè)計(jì)采用4個(gè)相同的N溝道功率MOSFET的H橋電路,具備較好的性能和較高的可靠性,并具有較大的驅(qū)動(dòng)電流。N溝道MOS管采用的是IRF460。IRF460的參數(shù)為N溝道MOS管,Vdss=500V, Rds(on)=0.27ohm, Id=20A。滿足直流伺服電機(jī)的要求。
圖5-3中4只開(kāi)關(guān)管為續(xù)流二極管,可為線圈繞組提供續(xù)流回路。當(dāng)電機(jī)正常運(yùn)行時(shí),驅(qū)動(dòng)電流通過(guò)主開(kāi)關(guān)管流過(guò)電機(jī)。當(dāng)電機(jī)處于制動(dòng)狀態(tài)時(shí),電機(jī)工作在發(fā)電狀態(tài),轉(zhuǎn)子電流必須通過(guò)續(xù)流二極管流通,否則電機(jī)就會(huì)發(fā)熱,嚴(yán)重時(shí)甚至燒毀。
圖5-3 H橋驅(qū)動(dòng)電路
5.5 自舉驅(qū)動(dòng)電路
在功率變換裝置中,根據(jù)主電路的結(jié)構(gòu),其功率開(kāi)關(guān)器件一般采用直接驅(qū)動(dòng)和隔離驅(qū)動(dòng)兩種方式。采用隔離驅(qū)動(dòng)方式時(shí)需要將多路驅(qū)動(dòng)電路、控制電路、主電路互相隔離,以免引起災(zāi)難性的后果。隔離驅(qū)動(dòng)可分為電磁隔離和光電隔離兩種方式。
光電隔離具有體積小,結(jié)構(gòu)簡(jiǎn)單等優(yōu)點(diǎn),但存在共模抑制能力差,傳輸速度慢的缺點(diǎn)??焖俟怦畹乃俣纫矁H幾十kHz。
本設(shè)計(jì)采用IR2110,主要是它兼有光耦隔離(體積?。┖碗姶鸥綦x(速度快)的優(yōu)點(diǎn),是中小功率變換裝置中驅(qū)動(dòng)器件的首選品種。IR2110 采用HVIC 和閂鎖抗干擾CMOS 制造工藝,DIP14 腳封裝。具有獨(dú)立的低端和高端輸入通道;懸浮電源采用自舉電路,其高端工作電壓可達(dá)500V,dv/dt=±50V/ns,15V 下靜態(tài)功耗僅116mW;輸出的電源端
(腳3,即功率器件的柵極驅(qū)動(dòng)電壓)電壓范圍10~20V;邏輯電源電壓范圍(腳9)5~15V,可方便地與TTL,CMOS 電平相匹配,而且邏輯電源地和功率地之間允許有±5V 的偏移量;工作頻率高,可達(dá)500kHz;開(kāi)通、關(guān)斷延遲小,分別為120ns 和94ns;圖騰柱輸出峰值電流為2A。內(nèi)部原理如圖5-4所示。
圖5-4 IR2110內(nèi)部原理
各個(gè)引腳的定義分別是:
LO(引腳1):低端輸出
COM(引腳2):公共端
Vcc(引腳3):低端固定電源電壓
Nc(引腳4): 空端
Vs(引腳5):高端浮置電源偏移電壓
VB (引腳6):高端浮置電源電壓
HO(引腳7):高端輸出
Nc(引腳8): 空端
VDD(引腳9):邏輯電源電壓
HIN(引腳10): 邏輯高端輸入
SD(引腳11):關(guān)斷
LIN(引腳12):邏輯低端輸入
Vss(引腳13):邏輯電路地電位端,其值可以為0V
Nc(引腳14):空端
IR2110內(nèi)部功能由三部分組成:邏輯輸入;電平平移及輸出保護(hù)。如上所述IR2110的特點(diǎn),可以為裝置的設(shè)計(jì)帶來(lái)許多方便。尤其是高端懸浮自舉電源的設(shè)計(jì),可以大大減少驅(qū)動(dòng)電源的數(shù)目,即一組電源即可實(shí)現(xiàn)對(duì)上下端的控制。
高端側(cè)懸浮驅(qū)動(dòng)的自舉原理:
當(dāng)HIN為高電平時(shí)如圖5-5 :VM1開(kāi)通,VM2關(guān)斷,VC1加到S1的柵極和源極之間,C1通過(guò)VM1,Rg1和柵極和源極形成回路放電,這時(shí)C1就相當(dāng)于一個(gè)電壓源,從而使S1導(dǎo)通。由于LIN與HIN是一對(duì)互補(bǔ)輸入信號(hào),所以此時(shí)LIN為低電平,VM3關(guān)斷,VM4導(dǎo)通,這時(shí)聚集在S2柵極和源極的電荷在芯片內(nèi)部通過(guò)Rg2迅速對(duì)地放電,由于死區(qū)時(shí)間影響使S2在S1開(kāi)通之前迅速關(guān)斷。
圖5-5 狀態(tài)1
當(dāng)HIN為低電平時(shí)如圖5-6:VM1關(guān)斷,VM2導(dǎo)通,這時(shí)聚集在S1柵極和源極的電荷在芯片內(nèi)部通過(guò)Rg1迅速放電使S1關(guān)斷。經(jīng)過(guò)短暫的死區(qū)時(shí)間LIN為高電平,VM3導(dǎo)通,VM4關(guān)斷使VCC經(jīng)過(guò)Rg2和S2的柵極和源極形成回路,使S2開(kāi)通。在此同時(shí)VCC經(jīng)自舉二極管,C1和S2形成回路,對(duì)C1進(jìn)行充電,迅速為C1補(bǔ)充能量,如此循環(huán)反復(fù)。
圖5-6 狀態(tài)2
根據(jù)以上,本設(shè)計(jì)自舉電路電路使用2個(gè)IR2110,這兩個(gè)IR2110由4個(gè)MOS管組成的“H”橋電路相連接。 IR2110的供電電壓為15 V的電源電壓,其輸出工作電源為懸浮電源,通過(guò)自舉技術(shù)由固定電源得出。自舉技術(shù)利用升壓二極管、自舉升壓電容,使電容放電電壓和電源電壓疊加,從而使電壓升高。為防止自舉電容兩端電壓放電,則采用一個(gè)高頻快恢復(fù)二極管。自舉電容C1的電容值對(duì)于5 kHz以上的開(kāi)關(guān)頻率取O.1μF即可。為向開(kāi)關(guān)的容性負(fù)載提供瞬態(tài)電流,應(yīng)在VCC與COM、VDD與VSS之間連接兩只旁路電容,VCC上旁路用一只 0.1μF的陶瓷電容和一只1μF的鉭電容并聯(lián),而邏輯電源VDD上用一只0.1uF的陶瓷電容即可,即電容C3、C2分別為1μF、0.1μF。由于IR2110內(nèi)部的驅(qū)動(dòng)阻抗很小,直接用其驅(qū)動(dòng)“H”橋中的MOSFET器件會(huì)引起快速開(kāi)關(guān),可能造成MOSFET漏源間電壓振蕩,從而損壞MOS管。所有,應(yīng)在IR211O的輸出端和MOS管之間串接1個(gè)約20 Ω的無(wú)感電阻。如圖5-6所示。
圖5-6 自舉電路
5.6 脈寬信號(hào)產(chǎn)生電路
脈寬信號(hào)由PWM 專用控制器UC3637 產(chǎn)生,其內(nèi)部包含有一個(gè)三角波振蕩器,誤差放大器,兩個(gè)PWM比較器,輸出控制門,逐個(gè)脈沖限流比較器等,原理圖如圖5-7所示。
圖5-7 UC3637原理圖
UC3637可單電源或雙電源工作,工作電壓范圍±(2.5~20)V,特別有利于雙極性調(diào)制;雙路PWM信號(hào),圖騰柱輸出,供出或吸收電流能力100mA;逐個(gè)脈沖限流;內(nèi)藏線性良好的恒幅三角波振蕩器;欠壓封鎖;有溫度補(bǔ)償;2.5V閾值控制。UC3637具有一個(gè)高速、帶寬為1MHz、輸出低阻抗的
收藏