《江蘇省昆山市兵希中學(xué)中考數(shù)學(xué)一輪總復(fù)習(xí) 第16課時 反比例函數(shù)(無答案) 蘇科版》由會員分享,可在線閱讀,更多相關(guān)《江蘇省昆山市兵希中學(xué)中考數(shù)學(xué)一輪總復(fù)習(xí) 第16課時 反比例函數(shù)(無答案) 蘇科版(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第16課時:反比例函數(shù)
【課前預(yù)習(xí)】
一、知識梳理:
1、反比例函數(shù)的概念:形如(為常數(shù),≠0);自變量的取值范圍是除0以外的一切實數(shù).
2、反比例函數(shù)的圖象和性質(zhì).
3、用待定系數(shù)法求反比例函數(shù)的解析式.
4、用反比例函數(shù)解決某些實際問題.
二、課前預(yù)習(xí):
1、下列函數(shù)中,是反比例函數(shù)的為( )
A. B. C. D.
2、若反比例函數(shù)的圖像在第二、四象限,則的值是 .
3、已知反比例函數(shù)的圖象經(jīng)過點,則此函數(shù)的關(guān)系式是 .
4、若與成反比例,與成正比例,則是的 .
5
2、、在函數(shù)(>0)的圖象上有三點A1(x1,y1),A2(x2,y2),A3( x3,y3),若x1
3、中的大致圖象是( )
例2、已知:,與成正比例,與成反比例,且時,;時,.求時,的值.
例3如圖,直線y=2x-6與反比例函數(shù)y=(x>0)的圖象交于點A(4,2),與x軸交于點B.
(1)求k的值及點B的坐標(biāo);
(2)在x軸上是否存在點C,使得AC=AB?若存在,求出點C的坐標(biāo);
若不存在,請說明理由.
例4、如圖,已知直線與雙曲線交于A,B兩點,且點A的橫坐標(biāo)為4.
(1)求k的值;
(2)若雙曲線上一點C的縱坐標(biāo)為8,求△AOC的面積;
(3)過原點O的另一條直線l交雙曲線于P,Q兩點(P點在第一象限),若由點A,B,
4、P,Q為頂點組成的四邊形面積為24,求點P的坐標(biāo).
例5 保護(hù)生態(tài)環(huán)境,建設(shè)綠色社會已經(jīng)從理念變?yōu)槿藗兊男袆樱郴S2009年1 月的利潤為200萬元.設(shè)2009年1 月為第1個月,第x個月的利潤為y萬元.由于排污超標(biāo),該廠決定從2009年1 月底起適當(dāng)限產(chǎn),并投入資金進(jìn)行治污改造,導(dǎo)致月利潤明顯下降,從1月到5月,y與x成反比例.到5月底,治污改造工程順利完工,從這時起,該廠每月的利潤比前一個月增加20萬元(如圖).
⑴分別求該化工廠治污期間及治污改造工程完工后y與x之間對應(yīng)的函數(shù)關(guān)系式.
⑵治污改造工程完工后經(jīng)過幾個月,該廠月利潤才能達(dá)到2009年1月的水平?
5、
⑶當(dāng)月利潤少于100萬元時為該廠資金緊張期,問該廠資金緊張期共有幾個月?
B
C
A
x
y
1
O
y1=x
y2=
四、課堂練習(xí):
1、函數(shù)y1=x(x≥0),y2= (x>0)的圖象如圖所示,下列結(jié)論:
① 兩函數(shù)圖象的交點坐標(biāo)為A(2,2);② 當(dāng)x>2時,y2>y1;
③ 直線x=1分別與兩函數(shù)圖象交于B、C兩點,則線段BC的長為3;
④ 當(dāng)x逐漸增大時,y1的值隨著x的增大而增大,y2的值隨著x的增大而減小.
則其中正確的是( )
A.只有①② B.只有①③ C.只有②④ D.只有①③④
O
y
6、
x
B
A
2、如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于兩點.
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求的面積;
(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
【課后作業(yè)】 班級 姓名
一、 填空題:
y
x
O
C.
y
x
O
A.
y
x
O
D.
y
x
O
B.
1、若,則正比例函數(shù)與反比例函數(shù)在同一坐標(biāo)系中的大致圖象可能是( )
7、
2、下列函數(shù)中,y隨x增大而增大的是( )
A. B. C. D.
3、已知反比例函數(shù),下列結(jié)論不正確的是( )
A、圖象經(jīng)過點(1,1) B、圖象在第一、三象限
C、當(dāng)時, D、當(dāng)時,隨著的增大而增大
4、已知反比例函數(shù)的圖象經(jīng)過點,則這個反比例函數(shù)的解析式是 .
5、在反比例函數(shù)圖象每一支曲線上,y都隨x增大而減小,則k的取值范圍是 _______.
6、已知一次函數(shù)的圖象經(jīng)過第二、三、四象限,則反比例函數(shù) 的圖象在 .
7、一輛汽車勻速通過某
8、段公路,所需時間t(h)與行駛速度v(km/h)滿足函數(shù)關(guān)系:t=,其圖象為
如圖所示的一段曲線且端點為A(40,1)和B(m,0.5).
(1)求k和m的值;
(2)若行駛速度不得超過60 km/h,則汽車通過該路段最少需要多少時間?
8、如圖,直線y=2x+2與y軸交于點A,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=2.
(1)求k的值;
(2)點N(a,1)是反比例函數(shù)y=(x>0)圖象上的點,在x軸上是否存在點P,使得PM+PN最???若存在,求出點P的坐標(biāo);若不存在,請說明理由.
O
9、
x
A
B
C
y
二.選做題:
1、函數(shù)的圖象如圖所示,則結(jié)論:
①兩函數(shù)圖象的交點的坐標(biāo)為;②當(dāng)時,;
③當(dāng)時,;④當(dāng)逐漸增大時,隨著的增大而增大,
隨著的增大而減?。渲姓_結(jié)論的序號是 .2、如圖,函數(shù)與的圖象交于A、B兩點,過點A作AC垂直
于軸,垂足為C,則的面積為 .
3、已知點(-1,),(2,),(3,)在反比例函數(shù)的圖像上. 下列結(jié)論中正確的是( )
A. B.
C. D.
4、如圖,已知雙曲線經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標(biāo)為(
10、,4),則△AOC的面積為( )
A.12 B.9 C.6 D.4
5、已知反比例函數(shù)y=(m為常數(shù))的圖象經(jīng)過點A(-1,6).
(1)求m的值;
(2)如圖9,過點A作直線AC與函數(shù)y=的圖象交于點B,與x軸交于
點C,且AB=2BC,求點C的坐標(biāo).
6、如圖,P1是反比例函數(shù)在第一象限圖像上的一點,點A1 的坐標(biāo)為(2,0).
(1)當(dāng)點P1的橫坐標(biāo)逐漸增大時,△P1O A1的面積 將如何變化?
(2)若△P1O A1與△P2 A1 A2均為等邊三角形,求此反比例函數(shù)的解析式及A2點的坐標(biāo).